{ [Info,A,T:Type].
    es:EO+(Info). X:EClass(T  A). e:E.
      {(fst(MaxFst(X)(e)) ~ imax-list(map(e.(fst(X(e)));(X)(e))))
       (mxe:E(X)
          (mxe loc e 
           (MaxFst(X)(e) = X(mxe))
           (e':E(X). (e' loc e   ((fst(X(e')))  (fst(X(mxe))))))))} 
      supposing e  MaxFst(X) 
    supposing T r  }

{ Proof }



Definitions occuring in Statement :  max-fst-class: MaxFst(X) es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e loc e'  es-E: E map: map(f;as) subtype_rel: A r B assert: b uimplies: b supposing a uall: [x:A]. B[x] guard: {T} pi1: fst(t) le: A  B all: x:A. B[x] exists: x:A. B[x] implies: P  Q and: P  Q lambda: x.A[x] product: x:A  B[x] int: universe: Type sqequal: s ~ t equal: s = t imax-list: imax-list(L)
Definitions :  eclass-val: X(e) pi1: fst(t) le: A  B es-le: e loc e'  implies: P  Q es-E-interface: E(X) all: x:A. B[x] max-fst-class: MaxFst(X) int: product: x:A  B[x] equal: s = t and: P  Q exists: x:A. B[x] es-interface-predecessors: (X)(e) lambda: x.A[x] map: map(f;as) imax-list: imax-list(L) sqequal: s ~ t guard: {T} in-eclass: e  X assert: b es-E: E eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) universe: Type uall: [x:A]. B[x] void: Void subtype: S  T atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" subtype_rel: A r B decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  uimplies: b supposing a top: Top dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ union: left + right record-select: r.x member: t  T isect: x:A. B[x] so_lambda: x y.t[x; y] event_ordering: EO function: x:A  B[x] prop: set: {x:A| B[x]}  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  THENM: Error :THENM,  CollapseTHENA: Error :CollapseTHENA,  MaAuto: Error :MaAuto,  Unfold: Error :Unfold,  tactic: Error :tactic,  cand: A c B pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) sq_type: SQType(T) Id: Id so_lambda: x.t[x] accum_list: accum_list(a,x.f[a; x];x.base[x];L) list: type List lt_int: i <z j list_accum: list_accum(x,a.f[x; a];y;l) imax: imax(a;b) unit: Unit bool: bnot: b bor: p q band: p  q bimplies: p  q es-eq-E: e = e' eq_lnk: a = b eq_id: a = b eq_str: Error :eq_str,  deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] infix_ap: x f y grp_blt: a < b set_blt: a < b null: null(as) eq_int: (i = j) le_int: i z j iff: P  Q btrue: tt limited-type: LimitedType false: False true: True bfalse: ff combination: Combination(n;T) listp: A List squash: T tl: tl(l) hd: hd(l) es-loc: loc(e) nil: [] record: record(x.T[x]) nat: length: ||as|| natural_number: $n grp_car: |g| real: cons: [car / cdr] l_member: (x  l) or: P  Q can-apply: can-apply(f;x) isl: isl(x) select: l[i] remove-repeats: remove-repeats(eq;L) last: last(L) rev_implies: P  Q es-causl: (e < e') es-locl: (e <loc e') decidable: Dec(P) append: as @ bs intensional-universe: IType same-thread: same-thread(es;p;e;e') es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) es-fset-loc: i  locs(s) existse-between3: e(e1,e2].P[e] existse-between2: e[e1,e2].P[e] alle-between2: e[e1,e2].P[e] existse-between1: e[e1,e2).P[e] alle-between1: e[e1,e2).P[e] alle-le: ee'.P[e] alle-lt: e<e'.P[e] existse-le: ee'.P[e] existse-before: e<e'.P[e] es-causle: e c e' cs-precondition: state s may consider v in inning i cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-inning-committable: in state s, inning i could commit v  cs-inning-committed: in state s, inning i has committed v cs-passed: by state s, a passed inning i without archiving a value cs-archived: by state s, a archived v in inning i cs-not-completed: in state s, a has not completed inning i l_disjoint: l_disjoint(T;l1;l2) fset-closed: (s closed under fs) f-subset: xs  ys fset-member: a  s p-outcome: Outcome i-closed: i-closed(I) i-finite: i-finite(I) q-rel: q-rel(r;x) qless: r < s qle: r  s fun-connected: y is f*(x) l_all: (xL.P[x]) l_exists: (xL. P[x]) prime: prime(a) reducible: reducible(a) inject: Inj(A;B;f) l_contains: A  B accum_list_cons: accum_list_cons_compseq_tag_def D: Error :D,  ParallelOp: Error :ParallelOp,  Subst': Error :Subst',  proper-iseg: L1 < L2 iseg: l1  l2 multiply: n * m gt: i > j is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) atom: Atom$n Knd: Knd locl: locl(a) so_apply: x[s] atom_eq: atomeqn def filter: filter(P;l) RepeatFor: Error :RepeatFor,  MaAuto: Error :MaAuto,  IdLnk: IdLnk rationals: pi2: snd(t)
Lemmas :  pi2_wf assert_witness uall_wf guard_wf member-interface-predecessors-subtype l_member-settype es-le-loc list-subtype assert-eq-id uiff_inversion member_map imax-list-ub sq_stable__assert length-map pos-length equal-nil-sq-nil l_exists_wf pos_length2 member-interface-predecessors not_wf es-locl_wf decidable__l_member es-interface-val_wf2 bool_sq es-interface-subtype_rel intensional-universe_wf l_member_subtype cons_member decidable__equal_es-E-interface bool_subtype_base l_member_wf list_subtype_base set_subtype_base nat_wf length_wf_nat length_wf1 es-interface-predecessors-nonempty is-max-fst es-loc_wf squash_wf bnot_of_le_int lt_int_wf bnot_wf le_int_wf assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff eqff_to_assert iff_weakening_uiff uiff_transitivity eqtt_to_assert assert_of_lt_int bool_wf pi1_wf_top false_wf true_wf assert_elim list_accum_wf map_wf pi1_wf eclass-val_wf imax_wf es-E-interface_wf Id_wf ifthenelse_wf es-interface-predecessors_wf int_subtype_base subtype_base_sq imax-list_wf accum_list_wf le_wf es-le_wf assert_wf in-eclass_wf member_wf es-interface-top es-interface-subtype_rel2 max-fst-class_wf top_wf eclass_wf es-E_wf es-base-E_wf event-ordering+_inc event-ordering+_wf max-fst-val subtype_rel_wf subtype_rel_self

\mforall{}[Info,A,T:Type].
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(T  \mtimes{}  A).  \mforall{}e:E.
        \{(fst(MaxFst(X)(e))  \msim{}  imax-list(map(\mlambda{}e.(fst(X(e)));\mleq{}(X)(e))))
        \mwedge{}  (\mexists{}mxe:E(X)
                (mxe  \mleq{}loc  e 
                \mwedge{}  (MaxFst(X)(e)  =  X(mxe))
                \mwedge{}  (\mforall{}e':E(X).  (e'  \mleq{}loc  e    {}\mRightarrow{}  ((fst(X(e')))  \mleq{}  (fst(X(mxe))))))))\} 
        supposing  \muparrow{}e  \mmember{}\msubb{}  MaxFst(X) 
    supposing  T  \msubseteq{}r  \mBbbZ{}


Date html generated: 2011_08_16-PM-05_21_46
Last ObjectModification: 2011_06_20-AM-01_21_36

Home Index