{ [A:']. [dfps:DataflowProgram(A) List].
    [B:{B:Type| valueall-type(B)} ].
    [F:k:||dfps||  bag(df-program-type(dfps[k]))  bag(B)].
      better-parallel-dataflow(
      ||dfps||;k.map(dfp.df-program-meaning(dfp);dfps)[k];
      F)
      = df-program-meaning(parallel-df-program(B;F;dfps)) 
      supposing (F (i.{})) = {} 
    supposing 0 < ||dfps|| }

{ Proof }



Definitions occuring in Statement :  parallel-df-program: parallel-df-program(B;F;dfps) df-program-meaning: df-program-meaning(dfp) df-program-type: df-program-type(dfp) dataflow-program: DataflowProgram(A) better-parallel-dataflow: better-parallel-dataflow dataflow: dataflow(A;B) select: l[i] map: map(f;as) length: ||as|| int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] less_than: a < b set: {x:A| B[x]}  apply: f a lambda: x.A[x] function: x:A  B[x] list: type List natural_number: $n universe: Type equal: s = t empty-bag: {} bag: bag(T) valueall-type: valueall-type(T)
Definitions :  par_df1: par_df1{par_df1_compseq_tag_def:o}(dfp; F; B) bag-merge: bag-merge(as;bs) union: left + right parallel-df-prog2: parallel-df-prog2(B;G;dfp1;dfp2) subtract: n - m pi2: snd(t) bag-separate: bag-separate(bs) pi1: fst(t) ifthenelse: if b then t else f fi  cons: [car / cdr] add: n + m parallel-df-prog1: parallel-df-prog1(B;G;dfp) nil: [] eq_int: (i = j) lt_int: i <z j tl: tl(l) hd: hd(l) pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) ge: i  j  uiff: uiff(P;Q) subtype_rel: A r B top: Top product: x:A  B[x] grp_car: |g| nat: guard: {T} and: P  Q lelt: i  j < k void: Void implies: P  Q false: False not: A le: A  B natural_number: $n real: rationals: subtype: S  T int: limited-type: LimitedType all: x:A. B[x] empty-bag: {} apply: f a axiom: Ax parallel-df-program: parallel-df-program(B;F;dfps) df-program-meaning: df-program-meaning(dfp) map: map(f;as) lambda: x.A[x] length: ||as|| better-parallel-dataflow: better-parallel-dataflow prop: member: t  T so_lambda: x.t[x] uimplies: b supposing a dataflow: dataflow(A;B) equal: s = t function: x:A  B[x] bag: bag(T) df-program-type: df-program-type(dfp) select: l[i] int_seg: {i..j} set: {x:A| B[x]}  valueall-type: valueall-type(T) less_than: a < b list: type List dataflow-program: DataflowProgram(A) universe: Type isect: x:A. B[x] uall: [x:A]. B[x] minus: -n so_apply: x[s] permutation: permutation(T;L1;L2) quotient: x,y:A//B[x; y] sq_type: SQType(T) true: True assert: b is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) bag-member: bag-member(T;x;bs) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T sq_stable: SqStable(P) bool: MaAuto: Error :MaAuto,  tactic: Error :tactic,  corec: corec(T.F[T]) p-outcome: Outcome or: P  Q nat_plus: l_contains: A  B cmp-le: cmp-le(cmp;x;y) inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) l_all: (xL.P[x]) infix_ap: x f y fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} exists: x:A. B[x] atom: Atom$n i-finite: i-finite(I) i-closed: i-closed(I) dstype: dstype(TypeNames; d; a) fset-member: a  s l_disjoint: l_disjoint(T;l1;l2) MaName: MaName Knd: Knd IdLnk: IdLnk Id: Id fset-closed: (s closed under fs) fset: FSet{T} decidable: Dec(P) f-subset: xs  ys label: ...$L... t l_member: (x  l) cand: A c B iff: P  Q uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) so_apply: x[s1;s2] le_int: i z j bfalse: ff btrue: tt eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) name_eq: name_eq(x;y) eq_id: a = b eq_lnk: a = b bimplies: p  q band: p  q bor: p q bnot: b unit: Unit filter: filter(P;l) sqequal: s ~ t listp: A List combination: Combination(n;T) fpf-cap: f(x)?z suptype: suptype(S; T) parameter: parm{i} atom: Atom rec: rec(x.A[x]) tunion: x:A.B[x] b-union: A  B CollapseTHEN: Error :CollapseTHEN,  Complete: Error :Complete,  Try: Error :Try,  RepeatFor: Error :RepeatFor,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  bag-mapfilter: bag-mapfilter(f;P;bs) bag-filter: [xb|p[x]] bag-map: bag-map(f;bs) it: intensional-universe: IType primrec: primrec(n;b;c) proper-iseg: L1 < L2 iseg: l1  l2 gt: i > j
Lemmas :  list-subtype l_member_wf corec_wf map_length intensional-universe_wf unit_wf subtype_rel_self bag-separate_wf pi2_wf pi1_wf_top parallel-df-prog2_wf bag-merge_wf union-valueall-type df-program-type-valueall-type better-parallel-bag-dataflow-recode sq_stable__subtype_rel map_wf select-cons select-map bnot_of_le_int lt_int_wf le_int_wf assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff assert_of_lt_int set_subtype_base int_seg_properties eq_int_wf ifthenelse_wf parallel-df-prog2-meaning bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int assert_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf bfalse_wf btrue_wf sq_stable__and sq_stable__equal pos_length2 non_neg_length length_cons length_nil decidable__equal_int false_wf not_wf true_wf squash_wf better-parallel-dataflow_wf df-program-meaning_wf sq_stable__valueall-type subtype_base_sq int_subtype_base parallel-df-prog1-meaning permutation_wf subtype_rel_wf ge_wf nat_properties nat_ind_tp bag_wf dataflow_wf uall_wf dataflow-program_wf valueall-type_wf int_seg_wf df-program-type_wf select_wf length_wf1 empty-bag_wf guard_wf le_wf nat_wf comp_nat_ind_tp length_wf_nat top_wf member_wf

\mforall{}[A:\mBbbU{}'].  \mforall{}[dfps:DataflowProgram(A)  List].
    \mforall{}[B:\{B:Type|  valueall-type(B)\}  ].  \mforall{}[F:k:\mBbbN{}||dfps||  {}\mrightarrow{}  bag(df-program-type(dfps[k]))  {}\mrightarrow{}  bag(B)].
        better-parallel-dataflow(
        ||dfps||;\mlambda{}k.map(\mlambda{}dfp.df-program-meaning(dfp);dfps)[k];
        F)
        =  df-program-meaning(parallel-df-program(B;F;dfps)) 
        supposing  (F  (\mlambda{}i.\{\}))  =  \{\} 
    supposing  0  <  ||dfps||


Date html generated: 2011_08_16-AM-09_45_03
Last ObjectModification: 2011_06_18-AM-08_34_51

Home Index