{ 
[A:
']. 
[dfps:DataflowProgram(A) List].
    
[B:{B:Type| valueall-type(B)} ].
    
[F:k:
||dfps|| 
 bag(df-program-type(dfps[k])) 
 bag(B)].
      better-parallel-dataflow(
      ||dfps||;
k.map(
dfp.df-program-meaning(dfp);dfps)[k];
      F)
      = df-program-meaning(parallel-df-program(B;F;dfps)) 
      supposing (F (
i.{})) = {} 
    supposing 0 < ||dfps|| }
{ Proof }
Definitions occuring in Statement : 
parallel-df-program: parallel-df-program(B;F;dfps), 
df-program-meaning: df-program-meaning(dfp), 
df-program-type: df-program-type(dfp), 
dataflow-program: DataflowProgram(A), 
better-parallel-dataflow: better-parallel-dataflow, 
dataflow: dataflow(A;B), 
select: l[i], 
map: map(f;as), 
length: ||as||, 
int_seg: {i..j
}, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
less_than: a < b, 
set: {x:A| B[x]} , 
apply: f a, 
lambda:
x.A[x], 
function: x:A 
 B[x], 
list: type List, 
natural_number: $n, 
universe: Type, 
equal: s = t, 
empty-bag: {}, 
bag: bag(T), 
valueall-type: valueall-type(T)
Definitions : 
par_df1: par_df1{par_df1_compseq_tag_def:o}(dfp; F; B), 
bag-merge: bag-merge(as;bs), 
union: left + right, 
parallel-df-prog2: parallel-df-prog2(B;G;dfp1;dfp2), 
subtract: n - m, 
pi2: snd(t), 
bag-separate: bag-separate(bs), 
pi1: fst(t), 
ifthenelse: if b then t else f fi , 
cons: [car / cdr], 
add: n + m, 
parallel-df-prog1: parallel-df-prog1(B;G;dfp), 
nil: [], 
eq_int: (i =
 j), 
lt_int: i <z j, 
tl: tl(l), 
hd: hd(l), 
pair: <a, b>, 
fpf: a:A fp-> B[a], 
strong-subtype: strong-subtype(A;B), 
ge: i 
 j , 
uiff: uiff(P;Q), 
subtype_rel: A 
r B, 
top: Top, 
product: x:A 
 B[x], 
grp_car: |g|, 
nat:
, 
guard: {T}, 
and: P 
 Q, 
lelt: i 
 j < k, 
void: Void, 
implies: P 
 Q, 
false: False, 
not:
A, 
le: A 
 B, 
natural_number: $n, 
real:
, 
rationals:
, 
subtype: S 
 T, 
int:
, 
limited-type: LimitedType, 
all:
x:A. B[x], 
empty-bag: {}, 
apply: f a, 
axiom: Ax, 
parallel-df-program: parallel-df-program(B;F;dfps), 
df-program-meaning: df-program-meaning(dfp), 
map: map(f;as), 
lambda:
x.A[x], 
length: ||as||, 
better-parallel-dataflow: better-parallel-dataflow, 
prop:
, 
member: t 
 T, 
so_lambda: 
x.t[x], 
uimplies: b supposing a, 
dataflow: dataflow(A;B), 
equal: s = t, 
function: x:A 
 B[x], 
bag: bag(T), 
df-program-type: df-program-type(dfp), 
select: l[i], 
int_seg: {i..j
}, 
set: {x:A| B[x]} , 
valueall-type: valueall-type(T), 
less_than: a < b, 
list: type List, 
dataflow-program: DataflowProgram(A), 
universe: Type, 
isect:
x:A. B[x], 
uall:
[x:A]. B[x], 
minus: -n, 
so_apply: x[s], 
permutation: permutation(T;L1;L2), 
quotient: x,y:A//B[x; y], 
sq_type: SQType(T), 
true: True, 
assert:
b, 
is_list_splitting: is_list_splitting(T;L;LL;L2;f), 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x), 
bag-member: bag-member(T;x;bs), 
req: x = y, 
rnonneg: rnonneg(r), 
rleq: x 
 y, 
i-member: r 
 I, 
partitions: partitions(I;p), 
modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f), 
fpf-sub: f 
 g, 
squash:
T, 
sq_stable: SqStable(P), 
bool:
, 
MaAuto: Error :MaAuto, 
tactic: Error :tactic, 
corec: corec(T.F[T]), 
p-outcome: Outcome, 
or: P 
 Q, 
nat_plus: 
, 
l_contains: A 
 B, 
cmp-le: cmp-le(cmp;x;y), 
inject: Inj(A;B;f), 
reducible: reducible(a), 
prime: prime(a), 
l_exists: (
x
L. P[x]), 
l_all: (
x
L.P[x]), 
infix_ap: x f y, 
fun-connected: y is f*(x), 
qle: r 
 s, 
qless: r < s, 
q-rel: q-rel(r;x), 
sq_exists:
x:{A| B[x]}, 
exists:
x:A. B[x], 
atom: Atom$n, 
i-finite: i-finite(I), 
i-closed: i-closed(I), 
dstype: dstype(TypeNames; d; a), 
fset-member: a 
 s, 
l_disjoint: l_disjoint(T;l1;l2), 
MaName: MaName, 
Knd: Knd, 
IdLnk: IdLnk, 
Id: Id, 
fset-closed: (s closed under fs), 
fset: FSet{T}, 
decidable: Dec(P), 
f-subset: xs 
 ys, 
label: ...$L... t, 
l_member: (x 
 l), 
cand: A c
 B, 
iff: P 

 Q, 
uni_sat: a = !x:T. Q[x], 
inv_funs: InvFuns(A;B;f;g), 
eqfun_p: IsEqFun(T;eq), 
refl: Refl(T;x,y.E[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
usym: UniformlySym(T;x,y.E[x; y]), 
trans: Trans(T;x,y.E[x; y]), 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
connex: Connex(T;x,y.R[x; y]), 
uconnex: uconnex(T; x,y.R[x; y]), 
coprime: CoPrime(a,b), 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
comm: Comm(T;op), 
inverse: Inverse(T;op;id;inv), 
bilinear: BiLinear(T;pl;tm), 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f), 
action_p: IsAction(A;x;e;S;f), 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op), 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f), 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
cancel: Cancel(T;S;op), 
monot: monot(T;x,y.R[x; y];f), 
monoid_p: IsMonoid(T;op;id), 
group_p: IsGroup(T;op;id;inv), 
monoid_hom_p: IsMonHom{M1,M2}(f), 
grp_leq: a 
 b, 
integ_dom_p: IsIntegDom(r), 
prime_ideal_p: IsPrimeIdeal(R;P), 
no_repeats: no_repeats(T;l), 
value-type: value-type(T), 
so_apply: x[s1;s2], 
le_int: i 
z j, 
bfalse: ff, 
btrue: tt, 
eq_atom: x =a y, 
null: null(as), 
set_blt: a <
 b, 
grp_blt: a <
 b, 
dcdr-to-bool: [d]
, 
bl-all: (
x
L.P[x])_b, 
bl-exists: (
x
L.P[x])_b, 
b-exists: (
i<n.P[i])_b, 
eq_type: eq_type(T;T'), 
eq_atom: eq_atom$n(x;y), 
qeq: qeq(r;s), 
q_less: q_less(r;s), 
q_le: q_le(r;s), 
deq-member: deq-member(eq;x;L), 
deq-disjoint: deq-disjoint(eq;as;bs), 
deq-all-disjoint: deq-all-disjoint(eq;ass;bs), 
name_eq: name_eq(x;y), 
eq_id: a = b, 
eq_lnk: a = b, 
bimplies: p 

 q, 
band: p 
 q, 
bor: p 
q, 
bnot: 
b, 
unit: Unit, 
filter: filter(P;l), 
sqequal: s ~ t, 
listp: A List
, 
combination: Combination(n;T), 
fpf-cap: f(x)?z, 
suptype: suptype(S; T), 
parameter: parm{i}, 
atom: Atom, 
rec: rec(x.A[x]), 
tunion:
x:A.B[x], 
b-union: A 
 B, 
CollapseTHEN: Error :CollapseTHEN, 
Complete: Error :Complete, 
Try: Error :Try, 
RepeatFor: Error :RepeatFor, 
Auto: Error :Auto, 
CollapseTHENA: Error :CollapseTHENA, 
bag-mapfilter: bag-mapfilter(f;P;bs), 
bag-filter: [x
b|p[x]], 
bag-map: bag-map(f;bs), 
it:
, 
intensional-universe: IType, 
primrec: primrec(n;b;c), 
proper-iseg: L1 < L2, 
iseg: l1 
 l2, 
gt: i > j
Lemmas : 
list-subtype, 
l_member_wf, 
corec_wf, 
map_length, 
intensional-universe_wf, 
unit_wf, 
subtype_rel_self, 
bag-separate_wf, 
pi2_wf, 
pi1_wf_top, 
parallel-df-prog2_wf, 
bag-merge_wf, 
union-valueall-type, 
df-program-type-valueall-type, 
better-parallel-bag-dataflow-recode, 
sq_stable__subtype_rel, 
map_wf, 
select-cons, 
select-map, 
bnot_of_le_int, 
lt_int_wf, 
le_int_wf, 
assert_of_le_int, 
bnot_of_lt_int, 
assert_functionality_wrt_uiff, 
assert_of_lt_int, 
set_subtype_base, 
int_seg_properties, 
eq_int_wf, 
ifthenelse_wf, 
parallel-df-prog2-meaning, 
bool_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
assert_wf, 
eqff_to_assert, 
assert_of_bnot, 
not_functionality_wrt_uiff, 
bnot_wf, 
bfalse_wf, 
btrue_wf, 
sq_stable__and, 
sq_stable__equal, 
pos_length2, 
non_neg_length, 
length_cons, 
length_nil, 
decidable__equal_int, 
false_wf, 
not_wf, 
true_wf, 
squash_wf, 
better-parallel-dataflow_wf, 
df-program-meaning_wf, 
sq_stable__valueall-type, 
subtype_base_sq, 
int_subtype_base, 
parallel-df-prog1-meaning, 
permutation_wf, 
subtype_rel_wf, 
ge_wf, 
nat_properties, 
nat_ind_tp, 
bag_wf, 
dataflow_wf, 
uall_wf, 
dataflow-program_wf, 
valueall-type_wf, 
int_seg_wf, 
df-program-type_wf, 
select_wf, 
length_wf1, 
empty-bag_wf, 
guard_wf, 
le_wf, 
nat_wf, 
comp_nat_ind_tp, 
length_wf_nat, 
top_wf, 
member_wf
\mforall{}[A:\mBbbU{}'].  \mforall{}[dfps:DataflowProgram(A)  List].
    \mforall{}[B:\{B:Type|  valueall-type(B)\}  ].  \mforall{}[F:k:\mBbbN{}||dfps||  {}\mrightarrow{}  bag(df-program-type(dfps[k]))  {}\mrightarrow{}  bag(B)].
        better-parallel-dataflow(
        ||dfps||;\mlambda{}k.map(\mlambda{}dfp.df-program-meaning(dfp);dfps)[k];
        F)
        =  df-program-meaning(parallel-df-program(B;F;dfps)) 
        supposing  (F  (\mlambda{}i.\{\}))  =  \{\} 
    supposing  0  <  ||dfps||
Date html generated:
2011_08_16-AM-09_45_03
Last ObjectModification:
2011_06_18-AM-08_34_51
Home
Index