Nuprl Lemma : hdf-parallel-halted
∀[A,B:Type].
  ∀[inputs:A List]. ∀[X,Y:hdataflow(A;B)].
    hdf-halted(X || Y*(inputs)) = hdf-halted(X*(inputs)) ∧b hdf-halted(Y*(inputs)) 
  supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
hdf-parallel: X || Y
, 
iterate-hdataflow: P*(inputs)
, 
hdf-halted: hdf-halted(P)
, 
hdataflow: hdataflow(A;B)
, 
list: T List
, 
band: p ∧b q
, 
valueall-type: valueall-type(T)
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
list_induction, 
uall_wf, 
hdataflow_wf, 
equal_wf, 
bool_wf, 
hdf-halted_wf, 
iterate-hdataflow_wf, 
hdf-parallel_wf, 
eqtt_to_assert, 
iter_hdf_nil_lemma, 
hdf_halted_halt_red_lemma, 
btrue_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
hdf_halted_run_red_lemma, 
bfalse_wf, 
iter_hdf_cons_lemma, 
list_wf, 
valueall-type_wf, 
hdf-ap_wf, 
bag_wf, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
pi1_wf_top, 
top_wf, 
hdf-parallel-ap, 
subtype_rel_product, 
subtype_top
\mforall{}[A,B:Type].
    \mforall{}[inputs:A  List].  \mforall{}[X,Y:hdataflow(A;B)].
        hdf-halted(X  ||  Y*(inputs))  =  hdf-halted(X*(inputs))  \mwedge{}\msubb{}  hdf-halted(Y*(inputs)) 
    supposing  valueall-type(B)
Date html generated:
2015_07_17-AM-08_06_23
Last ObjectModification:
2015_02_03-PM-09_47_21
Home
Index