Nuprl Lemma : ap-action-op

[g:s-Group]. ∀[n:SeparationSpace]. ∀[a:sg-action(g;n)]. ∀[f,h:Point]. ∀[x:Point].  f(h(x)) ≡ (f h)(x)


Proof




Definitions occuring in Statement :  ap-action: h(x) sg-action: sg-action(g;n) s-group: s-Group sg-op: (x y) ss-eq: x ≡ y ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sg-action: sg-action(g;n) and: P ∧ Q cand: c∧ B so_lambda: λ2x.t[x] s-group: s-Group so_apply: x[s] all: x:A. B[x] prop: sq_stable: SqStable(P) implies:  Q ap-action: h(x) squash: T ss-eq: x ≡ y not: ¬A false: False subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  sq_stable__ss-eq ap-action_wf all_wf ss-point_wf ss-eq_wf sg-op_wf sg-id_wf ss-sep_wf s-group-structure_subtype1 s-group_subtype1 subtype_rel_transitivity s-group_wf s-group-structure_wf separation-space_wf sg-action_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination hypothesisEquality productElimination hypothesis independent_pairFormation dependent_set_memberEquality productEquality because_Cache sqequalRule lambdaEquality applyEquality functionExtensionality independent_functionElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination isect_memberEquality instantiate independent_isectElimination voidElimination

Latex:
\mforall{}[g:s-Group].  \mforall{}[n:SeparationSpace].  \mforall{}[a:sg-action(g;n)].  \mforall{}[f,h:Point].  \mforall{}[x:Point].
    f(h(x))  \mequiv{}  (f  h)(x)



Date html generated: 2017_10_02-PM-03_25_38
Last ObjectModification: 2017_07_03-PM-02_00_35

Theory : constructive!algebra


Home Index