Nuprl Lemma : ap-action-op
∀[g:s-Group]. ∀[n:SeparationSpace]. ∀[a:sg-action(g;n)]. ∀[f,h:Point]. ∀[x:Point].  f(h(x)) ≡ (f h)(x)
Proof
Definitions occuring in Statement : 
ap-action: h(x), 
sg-action: sg-action(g;n), 
s-group: s-Group, 
sg-op: (x y), 
ss-eq: x ≡ y, 
ss-point: Point, 
separation-space: SeparationSpace, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
sg-action: sg-action(g;n), 
and: P ∧ Q, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
s-group: s-Group, 
so_apply: x[s], 
all: ∀x:A. B[x], 
prop: ℙ, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
ap-action: h(x), 
squash: ↓T, 
ss-eq: x ≡ y, 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a
Lemmas referenced : 
sq_stable__ss-eq, 
ap-action_wf, 
all_wf, 
ss-point_wf, 
ss-eq_wf, 
sg-op_wf, 
sg-id_wf, 
ss-sep_wf, 
s-group-structure_subtype1, 
s-group_subtype1, 
subtype_rel_transitivity, 
s-group_wf, 
s-group-structure_wf, 
separation-space_wf, 
sg-action_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
productElimination, 
hypothesis, 
independent_pairFormation, 
dependent_set_memberEquality, 
productEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
isect_memberEquality, 
instantiate, 
independent_isectElimination, 
voidElimination
Latex:
\mforall{}[g:s-Group].  \mforall{}[n:SeparationSpace].  \mforall{}[a:sg-action(g;n)].  \mforall{}[f,h:Point].  \mforall{}[x:Point].
    f(h(x))  \mequiv{}  (f  h)(x)
Date html generated:
2017_10_02-PM-03_25_38
Last ObjectModification:
2017_07_03-PM-02_00_35
Theory : constructive!algebra
Home
Index