Nuprl Lemma : co-regext-Regularcoset

The proof that ⌜co-regext(a)⌝ is regular goes through as before, just
using co- versions of everything.⋅

a:coSet{i:l}. cRegular(co-regext(a))


Proof




Definitions occuring in Statement :  co-regext: co-regext(a) Regularcoset: cRegular(A) coSet: coSet{i:l} all: x:A. B[x]
Definitions unfolded in proof :  Wsup: Wsup(a;b) mk-set: f"(T) ext-eq: A ≡ B regextfun: regextfun(f;w) guard: {T} exists: x:A. B[x] top: Top co-regext: co-regext(a) uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: mk-coset: mk-coset(T;f) subtype_rel: A ⊆B implies:  Q member: t ∈ T and: P ∧ Q Regularcoset: cRegular(A) all: x:A. B[x]
Lemmas referenced :  exists_wf mk-coset_wf seteq_wf regextfun_wf coW_wf subtype_rel_weakening set-dom_wf coW-ext setmem-mk-coset coset-relation_wf set_wf subtype_rel_self setmem_wf coSet_wf subtype_rel_dep_function co-regext_wf mv-map_wf co-regext-lemma coSet_subtype subtype_coSet co-regext-transitive
Rules used in proof :  dependent_pairFormation productEquality voidEquality voidElimination isect_memberEquality rename setElimination independent_isectElimination setEquality universeEquality cumulativity functionEquality lambdaEquality because_Cache instantiate isectElimination independent_functionElimination productElimination sqequalRule applyEquality hypothesis_subsumption hypothesis hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:coSet\{i:l\}.  cRegular(co-regext(a))



Date html generated: 2018_07_29-AM-10_08_11
Last ObjectModification: 2018_07_21-PM-08_24_03

Theory : constructive!set!theory


Home Index