Nuprl Lemma : setmem-sub-set
∀s:Set{i:l}
  ∀[P:{a:Set{i:l}| (a ∈ s)}  ⟶ ℙ]
    (set-predicate{i:l}(s;a.P[a]) 
⇒ (∀a:Set{i:l}. ((a ∈ {a ∈ s | P[a]}) 
⇐⇒ (a ∈ s) ∧ P[a])))
Proof
Definitions occuring in Statement : 
sub-set: {a ∈ s | P[a]}
, 
set-predicate: set-predicate{i:l}(s;a.P[a])
, 
Set: Set{i:l}
, 
setmem: (x ∈ s)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
set-predicate: set-predicate{i:l}(s;a.P[a])
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
pi1: fst(t)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
sub-set: {a ∈ s | P[a]}
, 
Wsup: Wsup(a;b)
, 
mk-set: f"(T)
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
seteq_wf, 
item_mk_set_lemma, 
dom_mk_set_lemma, 
setmem-iff, 
set-predicate-iff, 
seteq_inversion, 
set-predicate_wf2, 
Set_wf, 
subtype_rel_self, 
coSet_wf, 
coSet-mem-Set-implies-Set, 
sub-set_wf, 
setmem_wf, 
setmem-mk-set, 
set-subtype-coSet, 
mk-set_wf, 
setmem_functionality_1, 
setmem-mk-set-sq, 
set-subtype, 
subtype-set
Rules used in proof : 
functionExtensionality, 
dependent_pairEquality, 
functionEquality, 
universeEquality, 
instantiate, 
productEquality, 
cumulativity, 
setEquality, 
dependent_pairFormation, 
independent_isectElimination, 
dependent_set_memberEquality, 
setElimination, 
lambdaEquality, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
isectElimination, 
rename, 
thin, 
productElimination, 
sqequalRule, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
hypothesis_subsumption, 
independent_pairFormation, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}s:Set\{i:l\}
    \mforall{}[P:\{a:Set\{i:l\}|  (a  \mmember{}  s)\}    {}\mrightarrow{}  \mBbbP{}]
        (set-predicate\{i:l\}(s;a.P[a])  {}\mRightarrow{}  (\mforall{}a:Set\{i:l\}.  ((a  \mmember{}  \{a  \mmember{}  s  |  P[a]\})  \mLeftarrow{}{}\mRightarrow{}  (a  \mmember{}  s)  \mwedge{}  P[a])))
Date html generated:
2018_07_29-AM-09_52_25
Last ObjectModification:
2018_07_18-AM-10_24_57
Theory : constructive!set!theory
Home
Index