Nuprl Lemma : setmem-sub-set

s:Set{i:l}
  ∀[P:{a:Set{i:l}| (a ∈ s)}  ⟶ ℙ]
    (set-predicate{i:l}(s;a.P[a])  (∀a:Set{i:l}. ((a ∈ {a ∈ P[a]}) ⇐⇒ (a ∈ s) ∧ P[a])))


Proof




Definitions occuring in Statement :  sub-set: {a ∈ P[a]} set-predicate: set-predicate{i:l}(s;a.P[a]) Set: Set{i:l} setmem: (x ∈ s) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  set-predicate: set-predicate{i:l}(s;a.P[a]) guard: {T} uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] prop: rev_implies:  Q pi1: fst(t) exists: x:A. B[x] top: Top sub-set: {a ∈ P[a]} Wsup: Wsup(a;b) mk-set: f"(T) subtype_rel: A ⊆B member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  seteq_wf item_mk_set_lemma dom_mk_set_lemma setmem-iff set-predicate-iff seteq_inversion set-predicate_wf2 Set_wf subtype_rel_self coSet_wf coSet-mem-Set-implies-Set sub-set_wf setmem_wf setmem-mk-set set-subtype-coSet mk-set_wf setmem_functionality_1 setmem-mk-set-sq set-subtype subtype-set
Rules used in proof :  functionExtensionality dependent_pairEquality functionEquality universeEquality instantiate productEquality cumulativity setEquality dependent_pairFormation independent_isectElimination dependent_set_memberEquality setElimination lambdaEquality independent_functionElimination because_Cache dependent_functionElimination voidEquality voidElimination isect_memberEquality isectElimination rename thin productElimination sqequalRule sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid introduction cut hypothesis_subsumption independent_pairFormation isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}s:Set\{i:l\}
    \mforall{}[P:\{a:Set\{i:l\}|  (a  \mmember{}  s)\}    {}\mrightarrow{}  \mBbbP{}]
        (set-predicate\{i:l\}(s;a.P[a])  {}\mRightarrow{}  (\mforall{}a:Set\{i:l\}.  ((a  \mmember{}  \{a  \mmember{}  s  |  P[a]\})  \mLeftarrow{}{}\mRightarrow{}  (a  \mmember{}  s)  \mwedge{}  P[a])))



Date html generated: 2018_07_29-AM-09_52_25
Last ObjectModification: 2018_07_18-AM-10_24_57

Theory : constructive!set!theory


Home Index