Nuprl Lemma : setmemfunclemma_ext
∀x1,s1,x2,s2:coSet{i:l}.  (seteq(x1;x2) 
⇒ seteq(s1;s2) 
⇒ {(x1 ∈ s1) 
⇐⇒ (x2 ∈ s2)})
Proof
Definitions occuring in Statement : 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
seq-nil: seq-nil()
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
squash: ↓T
, 
guard: {T}
, 
prop: ℙ
, 
has-value: (a)↓
, 
all: ∀x:A. B[x]
, 
strict4: strict4(F)
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
uall: ∀[x:A]. B[x]
, 
any: any x
, 
bool_cases, 
isom-games_inversion, 
win2strat-properties, 
isom-preserves-win2, 
coW-game-step-isom, 
isom-win2, 
coW-equiv_transitivity, 
sq_stable__equal, 
sq_stable__and, 
win2-iff, 
coW-equiv_inversion, 
coW-equiv-implies, 
coW-equiv-iff, 
seteq_inversion, 
seteq_transitivity, 
co-seteq-iff, 
setmem-iff, 
setmemfunclemma, 
set-item: set-item(s;x)
, 
seq-comp: f o s
, 
seq-cons: seq-cons(a;s)
, 
sg-init: InitialPos(g)
, 
coPathAgree: coPathAgree(a.B[a];n;w;p;q)
, 
copathAgree: copathAgree(a.B[a];w;x;y)
, 
copath-length: copath-length(p)
, 
or: P ∨ Q
, 
subtract: n - m
, 
pi2: snd(t)
, 
coW-item: coW-item(w;b)
, 
pi1: fst(t)
, 
coW-dom: coW-dom(a.B[a];w)
, 
top: Top
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
coPath: coPath(a.B[a];w;n)
, 
false: False
, 
true: True
, 
less_than': less_than'(a;b)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
copath: copath(a.B[a];w)
, 
coW-game: coW-game(a.B[a];w;w')
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
it: ⋅
, 
bfalse: ff
, 
eq_int: (i =z j)
, 
member: t ∈ T
Lemmas referenced : 
lifting-strict-decide, 
strict4-decide, 
lifting-strict-int_eq, 
strict4-spread, 
equal_wf, 
top_wf, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
lifting-strict-spread, 
setmemfunclemma, 
bool_cases, 
isom-games_inversion, 
win2strat-properties, 
isom-preserves-win2, 
coW-game-step-isom, 
isom-win2, 
coW-equiv_transitivity, 
sq_stable__equal, 
sq_stable__and, 
win2-iff, 
coW-equiv_inversion, 
coW-equiv-implies, 
coW-equiv-iff, 
seteq_inversion, 
seteq_transitivity, 
co-seteq-iff, 
setmem-iff
Rules used in proof : 
exceptionSqequal, 
axiomSqleEquality, 
spreadExceptionCases, 
independent_functionElimination, 
dependent_functionElimination, 
sqleReflexivity, 
productElimination, 
productEquality, 
callbyvalueSpread, 
divergentSqle, 
sqequalSqle, 
because_Cache, 
inlFormation, 
imageElimination, 
imageMemberEquality, 
inrFormation, 
applyExceptionCases, 
hypothesisEquality, 
closedConclusion, 
baseApply, 
callbyvalueApply, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}x1,s1,x2,s2:coSet\{i:l\}.    (seteq(x1;x2)  {}\mRightarrow{}  seteq(s1;s2)  {}\mRightarrow{}  \{(x1  \mmember{}  s1)  \mLeftarrow{}{}\mRightarrow{}  (x2  \mmember{}  s2)\})
Date html generated:
2018_07_29-AM-09_51_31
Last ObjectModification:
2018_07_11-PM-00_32_26
Theory : constructive!set!theory
Home
Index