Nuprl Lemma : win2-iff
∀g:SimpleGame. (win2(g) ⇐⇒ ∀p:{p:Pos(g)| Legal1(InitialPos(g);p)} . ∃q:{q:Pos(g)| Legal2(p;q)} . win2(g@q))
Proof
Definitions occuring in Statement : 
sg-change-init: g@j, 
win2: win2(g), 
sg-legal2: Legal2(x;y), 
sg-legal1: Legal1(x;y), 
sg-init: InitialPos(g), 
sg-pos: Pos(g), 
simple-game: SimpleGame, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
sg-legal2: Legal2(x;y), 
int_nzero: ℤ-o, 
sg-reachable: sg-reachable(g;x;y), 
sg-legal1: Legal1(x;y), 
nequal: a ≠ b ∈ T , 
assert: ↑b, 
bnot: ¬bb, 
sq_stable: SqStable(P), 
seq-truncate: seq-truncate(s;n), 
play-truncate: play-truncate(f;m), 
sq_type: SQType(T), 
sequence: sequence(T), 
spreadn: spread4, 
sg-change-init: g@j, 
sg-pos: Pos(g), 
simple-game: SimpleGame, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
win2strat: win2strat(g;n), 
ge: i ≥ j , 
exists: ∃x:A. B[x], 
guard: {T}, 
play-len: ||moves||, 
top: Top, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
or: P ∨ Q, 
decidable: Dec(P), 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
bfalse: ff, 
sg-init: InitialPos(g), 
pi2: snd(t), 
seq-item: s[i], 
seq-nil: seq-nil(), 
seq-cons: seq-cons(a;s), 
pi1: fst(t), 
seq-len: ||s||, 
play-item: moves[i], 
cand: A c∧ B, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
strat2play: strat2play(g;n;s), 
rev_implies: P ⇐ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtract: n - m, 
not: ¬A, 
false: False, 
le: A ≤ B, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
true: True, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
nat_plus: ℕ+, 
member: t ∈ T, 
win2: win2(g), 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
multiply-is-int-iff, 
mod2-2n-plus-1, 
nequal_wf, 
modulus_wf, 
mod2-2n, 
seq-tl-item, 
seq-add-len, 
seq-add-item, 
assert_of_lt_int, 
lt_int_wf, 
nat_plus_properties, 
nat_plus_subtype_nat, 
nat_plus_wf, 
seq-tl_wf, 
seq-add_wf, 
seq-tl-len, 
strat2play-invariant, 
iff_weakening_equal, 
strat2play_subtype_le, 
subtype_rel_set, 
int_seg_wf, 
minus-zero, 
true_wf, 
squash_wf, 
decidable__int_equal, 
not-equal-2, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
le_antisymmetry_iff, 
mul_preserves_le, 
mul-swap, 
sq_stable__le, 
multiply_nat_wf, 
add_nat_wf, 
add-is-int-iff, 
mul_bounds_1a, 
mul-commutes, 
mul-distributes, 
le-add-cancel-alt, 
strat2play-invariant-1, 
omega-shadow, 
two-mul, 
add-mul-special, 
one-mul, 
subtype_rel_self, 
not-equal-implies-less, 
zero-mul, 
mul-distributes-right, 
mul-associates, 
set_subtype_base, 
seq-cons-item, 
subtype_base_sq, 
sequence_wf, 
le_reflexive, 
le_weakening2, 
le_weakening, 
sequence_subtype, 
strat2play_subtype, 
sg-reachable_wf, 
add-subtract-cancel, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
uiff_transitivity, 
not-le-2, 
int_subtype_base, 
not_wf, 
bnot_wf, 
assert_wf, 
equal-wf-base, 
bool_wf, 
eq_int_wf, 
add-zero, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
subtract_wf, 
decidable__le, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
strat2play_wf, 
play-item_wf, 
subtype_rel_sets, 
play-len_wf, 
equal-wf-T-base, 
le-add-cancel2, 
lelt_wf, 
le-add-cancel, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
not-lt-2, 
decidable__lt, 
seq-item_wf, 
equal_wf, 
seq-len_wf, 
seq-nil_wf, 
seq-cons_wf, 
simple-game_wf, 
sg-change-init_wf, 
sg-legal2_wf, 
exists_wf, 
all_wf, 
respond-implies-win2, 
win2_wf, 
sg-init_wf, 
sg-legal1_wf, 
sg-pos_wf, 
set_wf, 
win2strat_wf, 
nat_wf, 
le_wf, 
false_wf, 
less_than_wf, 
win2strat-properties
Rules used in proof : 
levelHypothesis, 
addLevel, 
functionEquality, 
functionExtensionality, 
dependent_pairEquality, 
universeEquality, 
hyp_replacement, 
multiplyEquality, 
promote_hyp, 
sqequalIntensionalEquality, 
cumulativity, 
instantiate, 
imageElimination, 
applyLambdaEquality, 
impliesFunctionality, 
equalityElimination, 
dependentIntersection_memberEquality, 
closedConclusion, 
baseApply, 
minusEquality, 
addEquality, 
axiomEquality, 
intWeakElimination, 
isect_memberFormation, 
dependent_pairFormation, 
intEquality, 
voidEquality, 
isect_memberEquality, 
independent_isectElimination, 
voidElimination, 
unionElimination, 
productEquality, 
because_Cache, 
setElimination, 
setEquality, 
independent_functionElimination, 
productElimination, 
isectEquality, 
equalitySymmetry, 
equalityTransitivity, 
lambdaEquality, 
applyEquality, 
isectElimination, 
hypothesis, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
natural_numberEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalHypSubstitution, 
rename, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:SimpleGame
    (win2(g)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}p:\{p:Pos(g)|  Legal1(InitialPos(g);p)\}  .  \mexists{}q:\{q:Pos(g)|  Legal2(p;q)\}  .  win2(g@q))
Date html generated:
2018_07_25-PM-01_37_01
Last ObjectModification:
2018_07_11-PM-00_23_31
Theory : co-recursion
Home
Index