Nuprl Lemma : respond-implies-win2

g:SimpleGame. ((∀p:{p:Pos(g)| Legal1(InitialPos(g);p)} . ∃q:{q:Pos(g)| Legal2(p;q)} win2(g@q))  win2(g))


Proof




Definitions occuring in Statement :  sg-change-init: g@j win2: win2(g) sg-legal2: Legal2(x;y) sg-legal1: Legal1(x;y) sg-init: InitialPos(g) sg-pos: Pos(g) simple-game: SimpleGame all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  sg-legal2: Legal2(x;y) int_nzero: -o nequal: a ≠ b ∈  sg-init: InitialPos(g) strat2play: strat2play(g;n;s) seq-tl: seq-tl(s) cand: c∧ B sg-reachable: sg-reachable(g;x;y) sq_stable: SqStable(P) eq_int: (i =z j) pi2: snd(t) seq-len: ||s|| seq-truncate: seq-truncate(s;n) seq-item: s[i] play-len: ||moves|| play-truncate: play-truncate(f;m) sequence: sequence(T) spreadn: spread4 sg-change-init: g@j sg-pos: Pos(g) simple-game: SimpleGame less_than: a < b nat_plus: + play-item: moves[i] sq_type: SQType(T) squash: T lelt: i ≤ j < k int_seg: {i..j-} bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtract: m uiff: uiff(P;Q) rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) win2strat: win2strat(g;n) uimplies: supposing a guard: {T} ge: i ≥  false: False nat: win2: win2(g) subtype_rel: A ⊆B pi1: fst(t) so_apply: x[s] so_lambda: λ2x.t[x] prop: uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  play-truncate_wf add_nat_plus le_transitivity nequal_wf trivial-cancel bfalse_wf multiply-is-int-iff eq_int_eq_false bool_subtype_base mul-swap sg-reachable_self sg-legal1-change-init add-is-int-iff add-member-int_seg2 seq-settype mod2-2n-plus-1 mod2-2n seq-tl-item seq-truncate-item seq-len-truncate int_seg_properties nat_plus_properties nat_plus_subtype_nat set_subtype_base le_weakening2 nat_plus_wf multiply_nat_wf add_nat_wf mul_bounds_1a seq-truncate_wf strat2play-invariant int_seg_wf le-add-cancel-alt sq_stable__le seq-tl_wf seq-tl-len le_weakening seq-item_wf sg-reachable_wf seq-len_wf sequence_wf strat2play_subtype win2strat_wf win2strat-properties le_antisymmetry_iff mul_preserves_le le-add-cancel2 minus-zero not-equal-2 decidable__int_equal decidable__lt omega-shadow not-lt-2 two-mul add-mul-special one-mul le_reflexive iff_weakening_equal true_wf squash_wf subtype_rel_self not-equal-implies-less subtype_base_sq zero-mul mul-distributes-right mul-associates mul-commutes mul-distributes play-item_wf lelt_wf strat2play-invariant-1 assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity play-len_wf equal-wf-T-base le_wf not-le-2 strat2play_wf int_subtype_base not_wf bnot_wf assert_wf equal-wf-base bool_wf eq_int_wf simple-game_wf nat_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties all_wf set_wf equal_wf sg-change-init_wf win2_wf sg-legal2_wf exists_wf sg-init_wf sg-legal1_wf sg-pos_wf
Rules used in proof :  applyLambdaEquality addLevel functionEquality productEquality isectEquality universeEquality imageMemberEquality cumulativity instantiate multiplyEquality sqequalIntensionalEquality imageElimination impliesFunctionality equalityElimination dependent_set_memberEquality dependentIntersection_memberEquality closedConclusion baseApply baseClosed minusEquality intEquality voidEquality isect_memberEquality addEquality independent_pairFormation unionElimination axiomEquality voidElimination independent_isectElimination natural_numberEquality intWeakElimination isect_memberFormation independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity productElimination because_Cache sqequalRule setElimination isectElimination extract_by_obid introduction setEquality hypothesisEquality sqequalHypSubstitution functionExtensionality applyEquality lambdaEquality dependent_pairFormation rename thin promote_hyp hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:SimpleGame
    ((\mforall{}p:\{p:Pos(g)|  Legal1(InitialPos(g);p)\}  .  \mexists{}q:\{q:Pos(g)|  Legal2(p;q)\}  .  win2(g@q))  {}\mRightarrow{}  win2(g))



Date html generated: 2018_07_25-PM-01_36_33
Last ObjectModification: 2018_06_20-PM-09_31_37

Theory : co-recursion


Home Index