Nuprl Lemma : seq-cons_wf

[T:Type]. ∀[a:T]. ∀[s:sequence(T)].  (seq-cons(a;s) ∈ sequence(T))


Proof




Definitions occuring in Statement :  seq-cons: seq-cons(a;s) sequence: sequence(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-cons: seq-cons(a;s) sequence: sequence(T) nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b lelt: i ≤ j < k
Lemmas referenced :  decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf equal-wf-T-base iff_weakening_uiff assert_of_bnot assert_of_eq_int int_seg_wf subtract_wf not-equal-2 minus-zero minus-minus decidable__lt not-lt-2 less-iff-le and_wf less_than_wf sequence_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin dependent_pairEquality dependent_set_memberEquality addEquality setElimination rename because_Cache hypothesis natural_numberEquality extract_by_obid dependent_functionElimination hypothesisEquality unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination isectElimination imageMemberEquality baseClosed imageElimination applyEquality lambdaEquality isect_memberEquality voidEquality intEquality minusEquality equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate cumulativity impliesFunctionality functionExtensionality functionEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[s:sequence(T)].    (seq-cons(a;s)  \mmember{}  sequence(T))



Date html generated: 2018_07_25-PM-01_28_57
Last ObjectModification: 2018_06_12-PM-10_26_52

Theory : arithmetic


Home Index