Nuprl Lemma : poset-functor-comp
∀[I,J,K:Cname List]. ∀[f:name-morph(I;J)]. ∀[g:name-morph(J;K)].
  (poset-functor(I;K;(f o g))
  = functor-comp(poset-functor(J;K;g);poset-functor(I;J;f))
  ∈ Functor(poset-cat(K);poset-cat(I)))
Proof
Definitions occuring in Statement : 
poset-functor: poset-functor(J;K;f)
, 
poset-cat: poset-cat(J)
, 
name-comp: (f o g)
, 
name-morph: name-morph(I;J)
, 
coordinate_name: Cname
, 
functor-comp: functor-comp(F;G)
, 
cat-functor: Functor(C1;C2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
functor-arrow: arrow(F)
, 
pi2: snd(t)
, 
functor-comp: functor-comp(F;G)
, 
mk-functor: mk-functor, 
poset-functor: poset-functor(J;K;f)
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
poset-cat: poset-cat(J)
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal-functors, 
poset-cat_wf, 
poset-functor_wf, 
name-comp_wf, 
functor-comp_wf, 
cat-ob_wf, 
functor-arrow_wf, 
cat-arrow_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
ob_pair_lemma, 
ob_mk_functor_lemma, 
cat_ob_pair_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
nil_wf, 
name-comp-assoc, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
applyEquality, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[I,J,K:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[g:name-morph(J;K)].
    (poset-functor(I;K;(f  o  g))  =  functor-comp(poset-functor(J;K;g);poset-functor(I;J;f)))
Date html generated:
2017_10_05-AM-10_29_06
Last ObjectModification:
2017_07_28-AM-11_24_03
Theory : cubical!sets
Home
Index