Nuprl Lemma : unique-poset-functor

C:SmallCategory. ∀I:Cname List. ∀L:name-morph(I;[]) ⟶ cat-ob(C). ∀E:i:nameset(I)
                                                                      ⟶ c:{c:name-morph(I;[])| (c i) 0 ∈ ℕ2} 
                                                                      ⟶ (cat-arrow(C) (L c) (L flip(c;i))).
  (edge-arrows-commute(C;I;L;E)  (∃!F:Functor(poset-cat(I);C). poset-functor-extends(C;I;L;E;F)))


Proof




Definitions occuring in Statement :  edge-arrows-commute: edge-arrows-commute(C;I;L;E) poset-functor-extends: poset-functor-extends(C;I;L;E;F) poset-cat: poset-cat(J) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory nil: [] list: List int_seg: {i..j-} exists!: !x:T. P[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] name-morph: name-morph(I;J) subtype_rel: A ⊆B uimplies: supposing a exists!: !x:T. P[x] exists: x:A. B[x] and: P ∧ Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  poset-extend-unique equal_wf all_wf and_wf poset-cat_wf cat-functor_wf poset-functor-extends_wf poset_functor_extend-extends poset_functor_extend-is-functor small-category_wf list_wf cat-ob_wf name-morph-flip_wf cat-arrow_wf int_seg_wf equal-wf-T-base coordinate_name_wf nil_wf name-morph_wf nameset_wf edge-arrows-commute_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis functionEquality isectElimination setEquality because_Cache natural_numberEquality applyEquality setElimination rename sqequalRule baseClosed independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation independent_pairFormation lambdaEquality

Latex:
\mforall{}C:SmallCategory.  \mforall{}I:Cname  List.  \mforall{}L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C).  \mforall{}E:i:nameset(I)
                                                                                                                                            {}\mrightarrow{}  c:\{c:name-morph(I;[])| 
                                                                                                                                                        (c  i)  =  0\} 
                                                                                                                                            {}\mrightarrow{}  (cat-arrow(C)  (L  c) 
                                                                                                                                                    (L  flip(c;i))).
    (edge-arrows-commute(C;I;L;E)  {}\mRightarrow{}  (\mexists{}!F:Functor(poset-cat(I);C).  poset-functor-extends(C;I;L;E;F)))



Date html generated: 2016_06_16-PM-07_01_33
Last ObjectModification: 2016_01_18-PM-04_48_59

Theory : cubical!sets


Home Index