Nuprl Lemma : poset_functor_extend-is-functor

[C:SmallCategory]. ∀[I:Cname List]. ∀[L:name-morph(I;[]) ⟶ cat-ob(C)]. ∀[E:i:nameset(I)
                                                                             ⟶ c:{c:name-morph(I;[])| (c i) 0 ∈ ℕ2} 
                                                                             ⟶ (cat-arrow(C) (L c) (L flip(c;i)))].
  <L, λc1,c2,p. poset_functor_extend(C;I;L;E;c1;c2)> ∈ Functor(poset-cat(I);C) supposing edge-arrows-commute(C;I;L;E)


Proof




Definitions occuring in Statement :  edge-arrows-commute: edge-arrows-commute(C;I;L;E) poset_functor_extend: poset_functor_extend(C;I;L;E;c1;c2) poset-cat: poset-cat(J) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname nil: [] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] pair: <a, b> natural_number: $n equal: t ∈ T cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cat-functor: Functor(C1;C2) subtype_rel: A ⊆B name-morph: name-morph(I;J) cat-ob: cat-ob(C) pi1: fst(t) poset-cat: poset-cat(J) all: x:A. B[x] and: P ∧ Q cand: c∧ B prop: respects-equality: respects-equality(S;T) implies:  Q cat-arrow: cat-arrow(C) pi2: snd(t) uiff: uiff(P;Q) nat: decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False ge: i ≥  guard: {T} le: A ≤ B top: Top true: True squash: T iff: ⇐⇒ Q rev_implies:  Q nameset: nameset(L) sq_stable: SqStable(P) coordinate_name: Cname int_upper: {i...} poset_functor_extend: poset_functor_extend(C;I;L;E;c1;c2) has-value: (a)↓ sq_type: SQType(T) bfalse: ff band: p ∧b q ifthenelse: if then else fi  int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) assert: b btrue: tt eq_int: (i =z j) name-morph-flip: flip(f;y) bool: 𝔹 unit: Unit it: bnot: ¬bb rev_uimplies: rev_uimplies(P;Q) l_member: (x ∈ l) select: L[n] cons: [a b] nat_plus: + subtract: m edge-arrows-commute: edge-arrows-commute(C;I;L;E)
Lemmas referenced :  subtype_rel_self cat-ob_wf poset-cat_wf poset_functor_extend_wf name-morph_wf nil_wf coordinate_name_wf cat-arrow_wf poset_functor_extend_id cat-id_wf cat-comp_wf edge-arrows-commute_wf nameset_wf int_seg_wf extd-nameset-respects-equality name-morph-flip_wf list_wf small-category_wf assert_of_le_int extd-nameset_wf istype-assert isname_wf extd-nameset_subtype_int poset-cat-dist_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf nat_properties intformand_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_term_value_constant_lemma int_formula_prop_less_lemma ge_wf istype-less_than istype-le subtract-1-ge-0 istype-nat poset-cat-dist-add intformeq_wf itermAdd_wf istype-void int_formula_prop_eq_lemma int_term_value_add_lemma poset-cat-dist-zero equal_wf squash_wf true_wf istype-universe poset_functor_extend_same subtype_rel-equal iff_weakening_equal cat-comp-ident decidable__equal-poset-cat-ob equal_functionality_wrt_subtype_rel2 sq_stable__l_member decidable__equal-coordinate_name sq_stable__le l_member_wf value-type-has-value list-value-type filter_wf5 eq_int_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf assert_of_eq_int bfalse_wf name-morph-ext le_wf extd-nameset-nil int_seg_properties decidable__equal_int decidable__lt set_subtype_base lelt_wf int_subtype_base poset-cat-dist-non-zero int_seg_subtype_special int_seg_cases non_null_filter_iff list-subtype l_exists_iff assert_wf equal-wf-T-base iff_transitivity iff_weakening_uiff assert_of_band respects-equality-set-trivial2 respects-equality-list length_of_nil_lemma filter_nil_lemma filter_wf2 btrue_neq_bfalse member-implies-null-eq-bfalse null_nil_lemma or_wf length_of_cons_lemma length_wf cons_wf exists_wf equal-wf-base all_wf list_induction filter_cons_lemma cons_member int_formual_prop_imp_lemma intformimplies_wf subtype_rel_dep_function subtype_rel_sets_simple subtype_rel_sets subtype_rel_list list_subtype_base reduce_hd_cons_lemma hd-wf-not-null assert_of_ff member_filter_2 nameset_subtype_base hd_member eq-cname_wf assert-eq-cname subtract_wf itermSubtract_wf int_term_value_subtract_lemma eqff_to_assert bool_cases_sqequal assert-bnot cat-comp-assoc poset-cat-arrow-flip add-is-int-iff false_wf poset-cat-dist-flip add_nat_plus length_wf_nat nat_plus_properties select_wf poset-cat-arrow-iff name-morph-flips-commute poset_functor_extend-flip
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt dependent_pairEquality_alt hypothesisEquality applyEquality thin sqequalRule extract_by_obid sqequalHypSubstitution isectElimination functionEquality hypothesis lambdaEquality_alt because_Cache independent_isectElimination lambdaFormation_alt universeIsType inhabitedIsType functionIsType dependent_functionElimination independent_pairFormation productElimination productIsType equalityIstype axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies setIsType natural_numberEquality setElimination rename baseClosed independent_functionElimination sqequalBase equalityIsType1 unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  voidElimination intWeakElimination functionIsTypeImplies applyLambdaEquality imageElimination instantiate universeEquality imageMemberEquality hyp_replacement callbyvalueReduce cumulativity intEquality closedConclusion equalityIsType4 hypothesis_subsumption equalityIsType3 productEquality promote_hyp functionExtensionality unionIsType setEquality inlFormation_alt inrFormation_alt equalityElimination pointwiseFunctionality baseApply

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C)].
\mforall{}[E:i:nameset(I)  {}\mrightarrow{}  c:\{c:name-morph(I;[])|  (c  i)  =  0\}    {}\mrightarrow{}  (cat-arrow(C)  (L  c)  (L  flip(c;i)))].
    <L,  \mlambda{}c1,c2,p.  poset\_functor\_extend(C;I;L;E;c1;c2)>  \mmember{}  Functor(poset-cat(I);C) 
    supposing  edge-arrows-commute(C;I;L;E)



Date html generated: 2020_05_21-AM-10_54_36
Last ObjectModification: 2019_12_09-PM-07_32_21

Theory : cubical!sets


Home Index