Nuprl Lemma : poset-cat-dist_wf

[I:Cname List]. ∀[x,y:cat-ob(poset-cat(I))].  (poset-cat-dist(I;x;y) ∈ ℕ)


Proof




Definitions occuring in Statement :  poset-cat-dist: poset-cat-dist(I;x;y) poset-cat: poset-cat(J) coordinate_name: Cname cat-ob: cat-ob(C) list: List nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T poset-cat-dist: poset-cat-dist(I;x;y) all: x:A. B[x] prop: subtype_rel: A ⊆B cat-ob: cat-ob(C) pi1: fst(t) poset-cat: poset-cat(J) name-morph: name-morph(I;J) so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] nameset: nameset(L) bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff
Lemmas referenced :  length_wf_nat coordinate_name_wf filter_wf5 l_member_wf eq_int_wf nameset_wf extd-nameset_wf nil_wf all_wf assert_wf isname_wf equal_wf bool_wf eqtt_to_assert assert_of_eq_int extd-nameset_subtype_int cat-ob_wf poset-cat_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache hypothesisEquality lambdaEquality lambdaFormation setElimination rename applyEquality setEquality functionEquality functionExtensionality dependent_set_memberEquality natural_numberEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:cat-ob(poset-cat(I))].    (poset-cat-dist(I;x;y)  \mmember{}  \mBbbN{})



Date html generated: 2017_10_05-AM-10_28_16
Last ObjectModification: 2017_07_28-AM-11_23_37

Theory : cubical!sets


Home Index