Nuprl Lemma : poset-cat-dist-non-zero
∀[I:Cname List]. ∀[x,y:cat-ob(poset-cat(I))].
  (null(filter(λx1.((x x1 =z 0) ∧b (y x1 =z 1));I)) ~ ff) supposing 
     ((¬(x = y ∈ cat-ob(poset-cat(I)))) and 
     (cat-arrow(poset-cat(I)) x y))
Proof
Definitions occuring in Statement : 
poset-cat: poset-cat(J), 
coordinate_name: Cname, 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
null: null(as), 
filter: filter(P;l), 
list: T List, 
band: p ∧b q, 
eq_int: (i =z j), 
bfalse: ff, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
apply: f a, 
lambda: λx.A[x], 
natural_number: $n, 
sqequal: s ~ t, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
poset-cat-dist: poset-cat-dist(I;x;y), 
all: ∀x:A. B[x], 
cat-ob: cat-ob(C), 
pi1: fst(t), 
poset-cat: poset-cat(J), 
name-morph: name-morph(I;J), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nameset: nameset(L), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
false: False, 
cons: [a / b]
Lemmas referenced : 
poset-cat-dist-zero, 
le_wf, 
poset-cat-dist_wf, 
nat_wf, 
not_wf, 
equal_wf, 
cat-ob_wf, 
poset-cat_wf, 
cat-arrow_wf, 
list_wf, 
coordinate_name_wf, 
filter_wf5, 
l_member_wf, 
eq_int_wf, 
nameset_wf, 
extd-nameset_wf, 
nil_wf, 
all_wf, 
assert_wf, 
isname_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
extd-nameset_subtype_int, 
list-cases, 
length_of_nil_lemma, 
null_nil_lemma, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
product_subtype_list, 
length_of_cons_lemma, 
null_cons_lemma, 
length_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation, 
independent_functionElimination, 
productElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
natural_numberEquality, 
promote_hyp, 
sqequalAxiom, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
functionEquality, 
because_Cache, 
functionExtensionality, 
dependent_set_memberEquality, 
unionElimination, 
equalityElimination, 
dependent_functionElimination, 
dependent_pairFormation, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
hypothesis_subsumption, 
addEquality
Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:cat-ob(poset-cat(I))].
    (null(filter(\mlambda{}x1.((x  x1  =\msubz{}  0)  \mwedge{}\msubb{}  (y  x1  =\msubz{}  1));I))  \msim{}  ff)  supposing 
          ((\mneg{}(x  =  y))  and 
          (cat-arrow(poset-cat(I))  x  y))
Date html generated:
2017_10_05-AM-10_28_47
Last ObjectModification:
2017_07_28-AM-11_23_50
Theory : cubical!sets
Home
Index