Nuprl Lemma : poset-cat-dist-non-zero

[I:Cname List]. ∀[x,y:cat-ob(poset-cat(I))].
  (null(filter(λx1.((x x1 =z 0) ∧b (y x1 =z 1));I)) ff) supposing 
     ((¬(x y ∈ cat-ob(poset-cat(I)))) and 
     (cat-arrow(poset-cat(I)) y))


Proof




Definitions occuring in Statement :  poset-cat: poset-cat(J) coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) null: null(as) filter: filter(P;l) list: List band: p ∧b q eq_int: (i =z j) bfalse: ff uimplies: supposing a uall: [x:A]. B[x] not: ¬A apply: a lambda: λx.A[x] natural_number: $n sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q uiff: uiff(P;Q) and: P ∧ Q prop: subtype_rel: A ⊆B nat: poset-cat-dist: poset-cat-dist(I;x;y) all: x:A. B[x] cat-ob: cat-ob(C) pi1: fst(t) poset-cat: poset-cat(J) name-morph: name-morph(I;J) so_lambda: λ2x.t[x] so_apply: x[s] nameset: nameset(L) bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  bfalse: ff or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top false: False cons: [a b]
Lemmas referenced :  poset-cat-dist-zero le_wf poset-cat-dist_wf nat_wf not_wf equal_wf cat-ob_wf poset-cat_wf cat-arrow_wf list_wf coordinate_name_wf filter_wf5 l_member_wf eq_int_wf nameset_wf extd-nameset_wf nil_wf all_wf assert_wf isname_wf bool_wf eqtt_to_assert assert_of_eq_int extd-nameset_subtype_int list-cases length_of_nil_lemma null_nil_lemma satisfiable-full-omega-tt intformnot_wf intformle_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf product_subtype_list length_of_cons_lemma null_cons_lemma length_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination lambdaFormation independent_functionElimination productElimination applyEquality lambdaEquality setElimination rename sqequalRule natural_numberEquality promote_hyp sqequalAxiom isect_memberEquality equalityTransitivity equalitySymmetry setEquality functionEquality because_Cache functionExtensionality dependent_set_memberEquality unionElimination equalityElimination dependent_functionElimination dependent_pairFormation intEquality voidElimination voidEquality computeAll hypothesis_subsumption addEquality

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:cat-ob(poset-cat(I))].
    (null(filter(\mlambda{}x1.((x  x1  =\msubz{}  0)  \mwedge{}\msubb{}  (y  x1  =\msubz{}  1));I))  \msim{}  ff)  supposing 
          ((\mneg{}(x  =  y))  and 
          (cat-arrow(poset-cat(I))  x  y))



Date html generated: 2017_10_05-AM-10_28_47
Last ObjectModification: 2017_07_28-AM-11_23_50

Theory : cubical!sets


Home Index