Nuprl Lemma : poset-cat-dist-zero

[I:Cname List]. ∀[x,y:cat-ob(poset-cat(I))].
  uiff(x y ∈ cat-ob(poset-cat(I));poset-cat-dist(I;x;y) ≤ 0) supposing cat-arrow(poset-cat(I)) y


Proof




Definitions occuring in Statement :  poset-cat-dist: poset-cat-dist(I;x;y) poset-cat: poset-cat(J) coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) list: List uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q poset-cat: poset-cat(J) cat-ob: cat-ob(C) pi1: fst(t) name-morph: name-morph(I;J) cat-arrow: cat-arrow(C) pi2: snd(t) poset-cat-dist: poset-cat-dist(I;x;y) le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] nameset: nameset(L) less_than': less_than'(a;b) l_all: (∀x∈L.P[x]) squash: T guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b sq_type: SQType(T) eq_int: (i =z j) band: p ∧b q ifthenelse: if then else fi  btrue: tt assert: b bfalse: ff bool: 𝔹 unit: Unit it: cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) l_member: (x ∈ l) coordinate_name: Cname int_upper: {i...} nat: cons: [a b] ge: i ≥  true: True
Lemmas referenced :  extd-nameset-nil less_than'_wf poset-cat-dist_wf equal_wf cat-ob_wf poset-cat_wf nameset_wf all_wf assert_wf isname_wf nil_wf coordinate_name_wf extd-nameset_wf le_wf cat-arrow_wf list_wf list-subtype filter_is_nil band_wf eq_int_wf extd-nameset_subtype_int length_of_nil_lemma false_wf int_seg_wf length_wf subtype_base_sq extd-nameset_subtype_base select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma decidable__equal_int int_subtype_base int_seg_subtype int_seg_cases bool_wf eqtt_to_assert assert_of_eq_int assert_of_le_int equal-wf-T-base decidable__cand member_filter iff_transitivity iff_weakening_uiff assert_of_band sq_stable__l_member decidable__equal-coordinate_name set_subtype_base select_member lelt_wf filter_wf5 l_member_wf list-cases null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse product_subtype_list length_of_cons_lemma cons_wf non_neg_length itermAdd_wf int_term_value_add_lemma intformeq_wf int_formula_prop_eq_lemma not_wf equal-wf-base nsub2_subtype_extd-nameset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution sqequalRule setElimination thin rename productElimination independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache isectElimination natural_numberEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality functionExtensionality functionEquality isect_memberEquality voidElimination independent_isectElimination lambdaFormation applyLambdaEquality imageMemberEquality baseClosed imageElimination instantiate cumulativity unionElimination dependent_pairFormation int_eqEquality intEquality voidEquality computeAll independent_functionElimination hypothesis_subsumption addEquality equalityElimination productEquality setEquality promote_hyp

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:cat-ob(poset-cat(I))].
    uiff(x  =  y;poset-cat-dist(I;x;y)  \mleq{}  0)  supposing  cat-arrow(poset-cat(I))  x  y



Date html generated: 2017_10_05-AM-10_28_41
Last ObjectModification: 2017_07_28-AM-11_23_45

Theory : cubical!sets


Home Index