Nuprl Lemma : edge-arrows-commute_wf

C:SmallCategory. ∀I:Cname List. ∀L:name-morph(I;[]) ⟶ cat-ob(C). ∀E:i:nameset(I)
                                                                      ⟶ c:{c:name-morph(I;[])| (c i) 0 ∈ ℕ2} 
                                                                      ⟶ (cat-arrow(C) (L c) (L flip(c;i))).
  (edge-arrows-commute(C;I;L;E) ∈ ℙ)


Proof




Definitions occuring in Statement :  edge-arrows-commute: edge-arrows-commute(C;I;L;E) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory nil: [] list: List int_seg: {i..j-} prop: all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T edge-arrows-commute: edge-arrows-commute(C;I;L;E) implies:  Q prop: uall: [x:A]. B[x] name-morph: name-morph(I;J) subtype_rel: A ⊆B and: P ∧ Q uimplies: supposing a name-morph-flip: flip(f;y) nameset: nameset(L) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q coordinate_name: Cname int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nameset_wf equal-wf-T-base int_seg_wf not_wf equal_wf name-morph_wf nil_wf coordinate_name_wf extd-nameset-nil cat-arrow_wf name-morph-flip_wf cat-ob_wf list_wf small-category_wf cat-comp_wf subtype_rel-equal eq-cname_wf eqtt_to_assert assert-eq-cname eqff_to_assert bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot iff_weakening_uiff assert_wf set_subtype_base le_wf istype-int int_subtype_base name-morph-flips-commute
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule functionEquality because_Cache setEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality applyEquality setElimination rename baseClosed functionIsType universeIsType setIsType equalityIsType3 dependent_set_memberEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry productElimination independent_isectElimination independent_pairFormation productIsType equalityIsType1 applyLambdaEquality unionElimination equalityElimination dependent_pairFormation_alt promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination intEquality lambdaEquality_alt closedConclusion

Latex:
\mforall{}C:SmallCategory.  \mforall{}I:Cname  List.  \mforall{}L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C).  \mforall{}E:i:nameset(I)
                                                                                                                                            {}\mrightarrow{}  c:\{c:name-morph(I;[])| 
                                                                                                                                                        (c  i)  =  0\} 
                                                                                                                                            {}\mrightarrow{}  (cat-arrow(C)  (L  c) 
                                                                                                                                                    (L  flip(c;i))).
    (edge-arrows-commute(C;I;L;E)  \mmember{}  \mBbbP{})



Date html generated: 2019_11_05-PM-00_32_51
Last ObjectModification: 2018_11_07-AM-11_53_14

Theory : cubical!sets


Home Index