Nuprl Lemma : poset-cat-dist-flip

I:Cname List. ∀x:cat-ob(poset-cat(I)). ∀a:nameset(I).  (((x a) 0 ∈ ℤ (1 ≤ poset-cat-dist(I;x;flip(x;a))))


Proof




Definitions occuring in Statement :  poset-cat-dist: poset-cat-dist(I;x;y) poset-cat: poset-cat(J) name-morph-flip: flip(f;y) nameset: nameset(L) coordinate_name: Cname cat-ob: cat-ob(C) list: List le: A ≤ B all: x:A. B[x] implies:  Q apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q poset-cat-dist: poset-cat-dist(I;x;y) nameset: nameset(L) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a name-morph: name-morph(I;J) bfalse: ff prop: or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) false: False cons: [a b] top: Top guard: {T} nat: decidable: Dec(P) iff: ⇐⇒ Q not: ¬A rev_implies:  Q sq_stable: SqStable(P) subtract: m le: A ≤ B true: True cat-ob: cat-ob(C) pi1: fst(t) poset-cat: poset-cat(J) so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] cand: c∧ B name-morph-flip: flip(f;y) rev_uimplies: rev_uimplies(P;Q) sq_type: SQType(T) int_seg: {i..j-} lelt: i ≤ j < k coordinate_name: Cname int_upper: {i...} satisfiable_int_formula: satisfiable_int_formula(fmla) l_member: (x ∈ l)
Lemmas referenced :  list-subtype coordinate_name_wf length-filter-pos eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int name-morph-flip_wf name-morph_wf nil_wf extd-nameset_subtype_int equal_wf nameset_wf list_wf list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 less_than_wf length_wf equal-wf-T-base extd-nameset_wf all_wf assert_wf isname_wf cat-ob_wf poset-cat_wf l_exists_iff l_member_wf subtype_rel_self iff_transitivity iff_weakening_uiff assert_of_band subtype_base_sq bool_subtype_base eq-cname_wf assert-eq-cname nsub2-flip lelt_wf decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf sq_stable__l_member decidable__equal-coordinate_name intformle_wf int_formula_prop_le_lemma decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf set_subtype_base le_wf int_subtype_base select_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache equalityTransitivity equalitySymmetry lambdaEquality applyEquality hypothesisEquality sqequalRule unionElimination equalityElimination productElimination independent_isectElimination setElimination rename natural_numberEquality dependent_functionElimination independent_functionElimination imageElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality addEquality independent_pairFormation imageMemberEquality baseClosed intEquality minusEquality setEquality functionEquality functionExtensionality dependent_pairFormation productEquality instantiate cumulativity dependent_set_memberEquality int_eqEquality computeAll

Latex:
\mforall{}I:Cname  List.  \mforall{}x:cat-ob(poset-cat(I)).  \mforall{}a:nameset(I).
    (((x  a)  =  0)  {}\mRightarrow{}  (1  \mleq{}  poset-cat-dist(I;x;flip(x;a))))



Date html generated: 2017_10_05-AM-10_28_53
Last ObjectModification: 2017_07_28-AM-11_23_54

Theory : cubical!sets


Home Index