Nuprl Lemma : nsub2-flip
∀[x,y:ℕ2].  uiff((1 - x) = y ∈ ℕ2;x = (1 - y) ∈ ℕ2)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
equal_wf, 
decidable__lt, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
intformle_wf, 
intformand_wf, 
decidable__le, 
subtract_wf, 
equal-wf-base-T, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
lelt_wf, 
int_seg_cases, 
false_wf, 
int_seg_subtype, 
int_seg_wf, 
equal-wf-base, 
int_seg_properties, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
independent_pairFormation, 
baseClosed, 
hypothesis_subsumption, 
addEquality, 
lambdaFormation, 
applyEquality, 
lambdaEquality, 
setEquality, 
productElimination, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
imageMemberEquality, 
independent_pairEquality, 
axiomEquality, 
int_eqEquality
Latex:
\mforall{}[x,y:\mBbbN{}2].    uiff((1  -  x)  =  y;x  =  (1  -  y))
Date html generated:
2016_06_16-PM-05_35_22
Last ObjectModification:
2016_01_18-PM-04_57_12
Theory : cubical!sets
Home
Index