Nuprl Lemma : nsub2-flip

[x,y:ℕ2].  uiff((1 x) y ∈ ℕ2;x (1 y) ∈ ℕ2)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} uiff: uiff(P;Q) uall: [x:A]. B[x] subtract: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} subtract: m uiff: uiff(P;Q) and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b squash: T true: True
Lemmas referenced :  equal_wf decidable__lt int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf intformle_wf intformand_wf decidable__le subtract_wf equal-wf-base-T int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt lelt_wf int_seg_cases false_wf int_seg_subtype int_seg_wf equal-wf-base int_seg_properties int_subtype_base subtype_base_sq decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality natural_numberEquality hypothesis unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination equalityTransitivity equalitySymmetry sqequalRule independent_pairFormation baseClosed hypothesis_subsumption addEquality lambdaFormation applyEquality lambdaEquality setEquality productElimination dependent_pairFormation isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality imageMemberEquality independent_pairEquality axiomEquality int_eqEquality

Latex:
\mforall{}[x,y:\mBbbN{}2].    uiff((1  -  x)  =  y;x  =  (1  -  y))



Date html generated: 2016_06_16-PM-05_35_22
Last ObjectModification: 2016_01_18-PM-04_57_12

Theory : cubical!sets


Home Index