Nuprl Lemma : poset_functor_extend_wf

[C:SmallCategory]. ∀[I:Cname List]. ∀[L:name-morph(I;[]) ⟶ cat-ob(C)]. ∀[E:i:nameset(I)
                                                                             ⟶ c:{c:name-morph(I;[])| (c i) 0 ∈ ℕ2} 
                                                                             ⟶ (cat-arrow(C) (L c) (L flip(c;i)))].
[c1,c2:name-morph(I;[])].
  poset_functor_extend(C;I;L;E;c1;c2) ∈ cat-arrow(C) (L c1) (L c2) supposing ∀x:nameset(I). ((c1 x) ≤ (c2 x))


Proof




Definitions occuring in Statement :  poset_functor_extend: poset_functor_extend(C;I;L;E;c1;c2) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory nil: [] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q uimplies: supposing a respects-equality: respects-equality(S;T) all: x:A. B[x] nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B sq_type: SQType(T) poset_functor_extend: poset_functor_extend(C;I;L;E;c1;c2) has-value: (a)↓ nameset: nameset(L) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q band: p ∧b q sq_stable: SqStable(P) squash: T l_member: (x ∈ l) cand: c∧ B coordinate_name: Cname int_upper: {i...} le: A ≤ B less_than': less_than'(a;b) true: True cons: [a b] subtract: m name-morph-flip: flip(f;y) eq_int: (i =z j) less_than: a < b
Lemmas referenced :  nameset_wf int_seg_wf respects-equality-set extd-nameset_wf nil_wf coordinate_name_wf lelt_wf istype-int subtype-respects-equality extd-nameset_subtype_int cat-arrow_wf name-morph-flip_wf name-morph_wf cat-ob_wf list_wf small-category_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self value-type-has-value list-value-type filter_wf5 band_wf eq_int_wf l_member_wf null_wf3 filter_wf_top eqtt_to_assert assert_of_null eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal_wf length_wf itermAdd_wf int_term_value_add_lemma istype-nat name-morph-ext cat-id_wf list-subtype filter_is_nil_implies bool_cases btrue_wf bfalse_wf l_all_iff not_wf assert_of_eq_int sq_stable__l_member decidable__equal-coordinate_name le_wf select_wf sq_stable__le respects-equality-set-trivial2 and_wf istype-assert iff_transitivity assert_of_band extd-nameset-nil int_seg_subtype_special int_seg_cases nsub2_subtype_extd-nameset filter_type hd_wf set_wf list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma length_wf_nat istype-false not-ge-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 subtype_rel_list cat-comp_wf list_subtype_base filter-filter squash_wf true_wf istype-universe eq-cname_wf assert-eq-cname neg_assert_of_eq_int filter-less member_filter_2 decidable__equal_set l_member-settype iff_imp_equal_bool iff_functionality_wrt_iff iff_weakening_equal subtract_nat_wf non_neg_length subtype_rel_universe1 nameset_subtype_base all_wf length-filter
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut functionIsType universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setIsType because_Cache equalityIstype natural_numberEquality applyEquality setElimination rename baseClosed sqequalRule intEquality lambdaEquality_alt independent_functionElimination independent_isectElimination dependent_functionElimination sqequalBase equalitySymmetry lambdaFormation_alt intWeakElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation axiomEquality equalityTransitivity isectIsTypeImplies inhabitedIsType functionIsTypeImplies productElimination unionElimination instantiate applyLambdaEquality dependent_set_memberEquality_alt productIsType hypothesis_subsumption callbyvalueReduce equalityElimination promote_hyp cumulativity addEquality hyp_replacement closedConclusion imageMemberEquality imageElimination setEquality minusEquality universeEquality functionExtensionality isect_memberEquality lambdaEquality isect_memberFormation

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C)].
\mforall{}[E:i:nameset(I)  {}\mrightarrow{}  c:\{c:name-morph(I;[])|  (c  i)  =  0\}    {}\mrightarrow{}  (cat-arrow(C)  (L  c)  (L  flip(c;i)))].
\mforall{}[c1,c2:name-morph(I;[])].
    poset\_functor\_extend(C;I;L;E;c1;c2)  \mmember{}  cat-arrow(C)  (L  c1)  (L  c2) 
    supposing  \mforall{}x:nameset(I).  ((c1  x)  \mleq{}  (c2  x))



Date html generated: 2019_11_05-PM-00_32_05
Last ObjectModification: 2018_12_10-AM-11_02_42

Theory : cubical!sets


Home Index