Nuprl Lemma : poset_functor_extend_wf
∀[C:SmallCategory]. ∀[I:Cname List]. ∀[L:name-morph(I;[]) ⟶ cat-ob(C)]. ∀[E:i:nameset(I)
                                                                             ⟶ c:{c:name-morph(I;[])| (c i) = 0 ∈ ℕ2} 
                                                                             ⟶ (cat-arrow(C) (L c) (L flip(c;i)))].
∀[c1,c2:name-morph(I;[])].
  poset_functor_extend(C;I;L;E;c1;c2) ∈ cat-arrow(C) (L c1) (L c2) supposing ∀x:nameset(I). ((c1 x) ≤ (c2 x))
Proof
Definitions occuring in Statement : 
poset_functor_extend: poset_functor_extend(C;I;L;E;c1;c2)
, 
name-morph-flip: flip(f;y)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
name-morph: name-morph(I;J)
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
respects-equality: respects-equality(S;T)
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
poset_functor_extend: poset_functor_extend(C;I;L;E;c1;c2)
, 
has-value: (a)↓
, 
nameset: nameset(L)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
band: p ∧b q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
cons: [a / b]
, 
subtract: n - m
, 
name-morph-flip: flip(f;y)
, 
eq_int: (i =z j)
, 
less_than: a < b
Lemmas referenced : 
nameset_wf, 
int_seg_wf, 
respects-equality-set, 
extd-nameset_wf, 
nil_wf, 
coordinate_name_wf, 
lelt_wf, 
istype-int, 
subtype-respects-equality, 
extd-nameset_subtype_int, 
cat-arrow_wf, 
name-morph-flip_wf, 
name-morph_wf, 
cat-ob_wf, 
list_wf, 
small-category_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_properties, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
subtype_rel_self, 
value-type-has-value, 
list-value-type, 
filter_wf5, 
band_wf, 
eq_int_wf, 
l_member_wf, 
null_wf3, 
filter_wf_top, 
eqtt_to_assert, 
assert_of_null, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal_wf, 
length_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
name-morph-ext, 
cat-id_wf, 
list-subtype, 
filter_is_nil_implies, 
bool_cases, 
btrue_wf, 
bfalse_wf, 
l_all_iff, 
not_wf, 
assert_of_eq_int, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
le_wf, 
select_wf, 
sq_stable__le, 
respects-equality-set-trivial2, 
and_wf, 
istype-assert, 
iff_transitivity, 
assert_of_band, 
extd-nameset-nil, 
int_seg_subtype_special, 
int_seg_cases, 
nsub2_subtype_extd-nameset, 
filter_type, 
hd_wf, 
set_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
length_wf_nat, 
istype-false, 
not-ge-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
subtype_rel_list, 
cat-comp_wf, 
list_subtype_base, 
filter-filter, 
squash_wf, 
true_wf, 
istype-universe, 
eq-cname_wf, 
assert-eq-cname, 
neg_assert_of_eq_int, 
filter-less, 
member_filter_2, 
decidable__equal_set, 
l_member-settype, 
iff_imp_equal_bool, 
iff_functionality_wrt_iff, 
iff_weakening_equal, 
subtract_nat_wf, 
non_neg_length, 
subtype_rel_universe1, 
nameset_subtype_base, 
all_wf, 
length-filter
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
functionIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setIsType, 
because_Cache, 
equalityIstype, 
natural_numberEquality, 
applyEquality, 
setElimination, 
rename, 
baseClosed, 
sqequalRule, 
intEquality, 
lambdaEquality_alt, 
independent_functionElimination, 
independent_isectElimination, 
dependent_functionElimination, 
sqequalBase, 
equalitySymmetry, 
lambdaFormation_alt, 
intWeakElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
productElimination, 
unionElimination, 
instantiate, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
hypothesis_subsumption, 
callbyvalueReduce, 
equalityElimination, 
promote_hyp, 
cumulativity, 
addEquality, 
hyp_replacement, 
closedConclusion, 
imageMemberEquality, 
imageElimination, 
setEquality, 
minusEquality, 
universeEquality, 
functionExtensionality, 
isect_memberEquality, 
lambdaEquality, 
isect_memberFormation
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C)].
\mforall{}[E:i:nameset(I)  {}\mrightarrow{}  c:\{c:name-morph(I;[])|  (c  i)  =  0\}    {}\mrightarrow{}  (cat-arrow(C)  (L  c)  (L  flip(c;i)))].
\mforall{}[c1,c2:name-morph(I;[])].
    poset\_functor\_extend(C;I;L;E;c1;c2)  \mmember{}  cat-arrow(C)  (L  c1)  (L  c2) 
    supposing  \mforall{}x:nameset(I).  ((c1  x)  \mleq{}  (c2  x))
Date html generated:
2019_11_05-PM-00_32_05
Last ObjectModification:
2018_12_10-AM-11_02_42
Theory : cubical!sets
Home
Index