Nuprl Lemma : filter-less
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List]. ||filter(P;L)|| < ||L|| supposing ∃x:T. ((x ∈ L) ∧ (¬↑(P x)))
Proof
Definitions occuring in Statement :
l_member: (x ∈ l)
,
length: ||as||
,
filter: filter(P;l)
,
list: T List
,
assert: ↑b
,
bool: 𝔹
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
exists: ∃x:A. B[x]
,
not: ¬A
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
uimplies: b supposing a
,
prop: ℙ
,
and: P ∧ Q
,
so_apply: x[s]
,
exists: ∃x:A. B[x]
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
top: Top
,
iff: P
⇐⇒ Q
,
false: False
,
or: P ∨ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
not: ¬A
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
decidable: Dec(P)
,
le: A ≤ B
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
less_than: a < b
,
squash: ↓T
Lemmas referenced :
list_induction,
isect_wf,
exists_wf,
l_member_wf,
not_wf,
assert_wf,
less_than_wf,
length_wf,
filter_wf5,
subtype_rel_dep_function,
bool_wf,
subtype_rel_self,
set_wf,
list_wf,
filter_nil_lemma,
length_of_nil_lemma,
nil_wf,
filter_cons_lemma,
length_of_cons_lemma,
cons_wf,
member-less_than,
nil_member,
cons_member,
eqtt_to_assert,
assert_elim,
and_wf,
equal_wf,
not_assert_elim,
btrue_neq_bfalse,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
filter-le,
decidable__lt,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformless_wf,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
cumulativity,
productEquality,
because_Cache,
hypothesis,
applyEquality,
functionExtensionality,
setEquality,
independent_isectElimination,
setElimination,
rename,
lambdaFormation,
independent_functionElimination,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
productElimination,
equalityTransitivity,
equalitySymmetry,
functionEquality,
universeEquality,
unionElimination,
equalityElimination,
dependent_set_memberEquality,
independent_pairFormation,
applyLambdaEquality,
dependent_pairFormation,
promote_hyp,
instantiate,
addEquality,
natural_numberEquality,
int_eqEquality,
intEquality,
computeAll,
imageElimination
Latex:
\mforall{}[T:Type]. \mforall{}[P:T {}\mrightarrow{} \mBbbB{}]. \mforall{}[L:T List]. ||filter(P;L)|| < ||L|| supposing \mexists{}x:T. ((x \mmember{} L) \mwedge{} (\mneg{}\muparrow{}(P x)))
Date html generated:
2017_04_17-AM-08_36_41
Last ObjectModification:
2017_02_27-PM-04_55_31
Theory : list_1
Home
Index