Nuprl Lemma : poset-cat-dist-add
∀[I:Cname List]. ∀[x,y,z:cat-ob(poset-cat(I))].
  (poset-cat-dist(I;x;z) = (poset-cat-dist(I;x;y) + poset-cat-dist(I;y;z)) ∈ ℤ) supposing 
     ((cat-arrow(poset-cat(I)) x y) and 
     (cat-arrow(poset-cat(I)) y z))
Proof
Definitions occuring in Statement : 
poset-cat-dist: poset-cat-dist(I;x;y)
, 
poset-cat: poset-cat(J)
, 
coordinate_name: Cname
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
poset-cat-dist: poset-cat-dist(I;x;y)
, 
poset-cat: poset-cat(J)
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
cat-ob: cat-ob(C)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
name-morph: name-morph(I;J)
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
int_seg: {i..j-}
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
eq_int: (i =z j)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
Lemmas referenced : 
cat-arrow_wf, 
poset-cat_wf, 
cat-ob_wf, 
list_wf, 
coordinate_name_wf, 
equal-wf-T-base, 
extd-nameset_subtype_int, 
nil_wf, 
nameset_wf, 
assert_of_le_int, 
subtype_base_sq, 
int_subtype_base, 
extd-nameset-nil, 
int_seg_wf, 
int_seg_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
le_wf, 
equal_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
list_induction, 
all_wf, 
name-morph_wf, 
length_wf, 
filter_wf5, 
l_member_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
filter_nil_lemma, 
length_of_nil_lemma, 
filter_cons_lemma, 
cons_wf, 
name-morph_subtype, 
nameset_subtype, 
l_subset_right_cons_trivial, 
cons_member, 
equal-wf-base, 
int_seg_cases, 
length_of_cons_lemma, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
intformimplies_wf, 
int_formual_prop_imp_lemma, 
int_seg_subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
applyEquality, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
intEquality, 
setElimination, 
rename, 
baseClosed, 
independent_pairFormation, 
dependent_functionElimination, 
productElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
natural_numberEquality, 
applyLambdaEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll, 
functionEquality, 
productEquality, 
dependent_set_memberEquality, 
equalityElimination, 
setEquality, 
addEquality, 
inlFormation, 
hypothesis_subsumption, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion
Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y,z:cat-ob(poset-cat(I))].
    (poset-cat-dist(I;x;z)  =  (poset-cat-dist(I;x;y)  +  poset-cat-dist(I;y;z)))  supposing 
          ((cat-arrow(poset-cat(I))  x  y)  and 
          (cat-arrow(poset-cat(I))  y  z))
Date html generated:
2017_10_05-AM-10_28_23
Last ObjectModification:
2017_07_28-AM-11_23_42
Theory : cubical!sets
Home
Index