Nuprl Lemma : poset-cat-dist-add

[I:Cname List]. ∀[x,y,z:cat-ob(poset-cat(I))].
  (poset-cat-dist(I;x;z) (poset-cat-dist(I;x;y) poset-cat-dist(I;y;z)) ∈ ℤsupposing 
     ((cat-arrow(poset-cat(I)) y) and 
     (cat-arrow(poset-cat(I)) z))


Proof




Definitions occuring in Statement :  poset-cat-dist: poset-cat-dist(I;x;y) poset-cat: poset-cat(J) coordinate_name: Cname cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) list: List uimplies: supposing a uall: [x:A]. B[x] apply: a add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a poset-cat-dist: poset-cat-dist(I;x;y) poset-cat: poset-cat(J) cat-arrow: cat-arrow(C) pi2: snd(t) pi1: fst(t) cat-ob: cat-ob(C) all: x:A. B[x] and: P ∧ Q cand: c∧ B implies:  Q prop: name-morph: name-morph(I;J) subtype_rel: A ⊆B uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} int_seg: {i..j-} nameset: nameset(L) coordinate_name: Cname int_upper: {i...} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q eq_int: (i =z j) le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  cat-arrow_wf poset-cat_wf cat-ob_wf list_wf coordinate_name_wf equal-wf-T-base extd-nameset_subtype_int nil_wf nameset_wf assert_of_le_int subtype_base_sq int_subtype_base extd-nameset-nil int_seg_wf int_seg_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf le_wf equal_wf intformless_wf int_formula_prop_less_lemma list_induction all_wf name-morph_wf length_wf filter_wf5 l_member_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int filter_nil_lemma length_of_nil_lemma filter_cons_lemma cons_wf name-morph_subtype nameset_subtype l_subset_right_cons_trivial cons_member equal-wf-base int_seg_cases length_of_cons_lemma add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf intformimplies_wf int_formual_prop_imp_lemma int_seg_subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule hypothesis applyEquality extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry lambdaFormation intEquality setElimination rename baseClosed independent_pairFormation dependent_functionElimination productElimination independent_isectElimination instantiate cumulativity independent_functionElimination natural_numberEquality applyLambdaEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality voidElimination voidEquality computeAll functionEquality productEquality dependent_set_memberEquality equalityElimination setEquality addEquality inlFormation hypothesis_subsumption pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y,z:cat-ob(poset-cat(I))].
    (poset-cat-dist(I;x;z)  =  (poset-cat-dist(I;x;y)  +  poset-cat-dist(I;y;z)))  supposing 
          ((cat-arrow(poset-cat(I))  x  y)  and 
          (cat-arrow(poset-cat(I))  y  z))



Date html generated: 2017_10_05-AM-10_28_23
Last ObjectModification: 2017_07_28-AM-11_23_42

Theory : cubical!sets


Home Index