Nuprl Lemma : poset-functor-extends_wf

[C:SmallCategory]. ∀[I:Cname List]. ∀[L:name-morph(I;[]) ⟶ cat-ob(C)]. ∀[E:i:nameset(I)
                                                                             ⟶ c:{c:name-morph(I;[])| (c i) 0 ∈ ℕ2} 
                                                                             ⟶ (cat-arrow(C) (L c) (L flip(c;i)))].
[F:Functor(poset-cat(I);C)].
  (poset-functor-extends(C;I;L;E;F) ∈ ℙ)


Proof




Definitions occuring in Statement :  poset-functor-extends: poset-functor-extends(C;I;L;E;F) poset-cat: poset-cat(J) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname nil: [] list: List int_seg: {i..j-} uall: [x:A]. B[x] prop: member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] poset-functor-extends: poset-functor-extends(C;I;L;E;F) prop: and: P ∧ Q member: t ∈ T name-morph: name-morph(I;J) respects-equality: respects-equality(S;T) all: x:A. B[x] implies:  Q poset-cat: poset-cat(J) pi1: fst(t) cat-ob: cat-ob(C) uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B cat-functor: Functor(C1;C2) functor-arrow: arrow(F) pi2: snd(t) cat-arrow: cat-arrow(C) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) name-morph-flip: flip(f;y) nameset: nameset(L) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  coordinate_name: Cname int_upper: {i...} sq_type: SQType(T) guard: {T} int_seg: {i..j-} squash: T sq_stable: SqStable(P) lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] subtract: m false: False bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q functor-ob: ob(F)
Lemmas referenced :  cat-functor_wf poset-cat_wf nameset_wf int_seg_wf extd-nameset-respects-equality nil_wf coordinate_name_wf cat-arrow_wf name-morph-flip_wf name-morph_wf cat-ob_wf list_wf small-category_wf isname_wf assert_wf all_wf extd-nameset_wf subtype_rel_self subtype_rel_dep_function functor-ob_wf equal_wf equal-wf-T-base extd-nameset-nil assert_witness le_int_wf extd-nameset_subtype_int assert_of_le_int eq-cname_wf eqtt_to_assert assert-eq-cname subtype_base_sq set_subtype_base le_wf istype-int int_subtype_base lelt_wf sq_stable__le sq_stable__l_member decidable__equal-coordinate_name int_seg_properties decidable__le subtract_wf full-omega-unsat intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff istype-le l_member_wf itermVar_wf int_term_value_var_lemma subtype_rel-equal subtype_rel_set
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt productEquality universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionIsType setIsType because_Cache equalityIstype natural_numberEquality applyEquality setElimination rename baseClosed dependent_functionElimination independent_functionElimination sqequalBase equalitySymmetry lambdaFormation functionExtensionality setEquality independent_isectElimination lambdaEquality sqequalRule functionEquality productElimination lambdaEquality_alt inhabitedIsType equalityTransitivity lambdaFormation_alt unionElimination equalityElimination promote_hyp instantiate cumulativity intEquality applyLambdaEquality imageMemberEquality imageElimination approximateComputation dependent_pairFormation_alt Error :memTop,  voidElimination dependent_set_memberEquality_alt int_eqEquality independent_pairFormation productIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C)].
\mforall{}[E:i:nameset(I)  {}\mrightarrow{}  c:\{c:name-morph(I;[])|  (c  i)  =  0\}    {}\mrightarrow{}  (cat-arrow(C)  (L  c)  (L  flip(c;i)))].
\mforall{}[F:Functor(poset-cat(I);C)].
    (poset-functor-extends(C;I;L;E;F)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_21-AM-10_52_54
Last ObjectModification: 2019_12_08-PM-07_05_43

Theory : cubical!sets


Home Index