Nuprl Lemma : closed-type-to-type_wf
∀[T:{ * ⊢ _}]. ∀[X:j⊢].  X ⊢ closed-type-to-type(T)
Proof
Definitions occuring in Statement : 
closed-type-to-type: closed-type-to-type(T)
, 
closed-cubical-type: { * ⊢ _}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
closed-type-to-type: closed-type-to-type(T)
, 
closed-cubical-type: { * ⊢ _}
, 
and: P ∧ Q
, 
cubical-type: {X ⊢ _}
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
I_cube_wf, 
fset_wf, 
nat_wf, 
istype-top, 
names-hom_wf, 
cube-set-restriction_wf, 
nh-id_wf, 
subtype_rel-equal, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cube-set-restriction-id, 
subtype_rel_self, 
iff_weakening_equal, 
nh-comp_wf, 
cube-set-restriction-comp, 
cubical_set_wf, 
closed-cubical-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
dependent_set_memberEquality_alt, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
universeIsType, 
instantiate, 
extract_by_obid, 
isectElimination, 
hypothesis, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
Error :memTop, 
because_Cache, 
functionIsType, 
lambdaFormation_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
independent_isectElimination, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[T:\{  *  \mvdash{}  \_\}].  \mforall{}[X:j\mvdash{}].    X  \mvdash{}  closed-type-to-type(T)
Date html generated:
2020_05_20-PM-01_50_56
Last ObjectModification:
2020_03_20-PM-01_19_40
Theory : cubical!type!theory
Home
Index