Nuprl Lemma : closed-type-to-type_wf

[T:{ * ⊢ _}]. ∀[X:j⊢].  X ⊢ closed-type-to-type(T)


Proof




Definitions occuring in Statement :  closed-type-to-type: closed-type-to-type(T) closed-cubical-type: * ⊢ _} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T closed-type-to-type: closed-type-to-type(T) closed-cubical-type: * ⊢ _} and: P ∧ Q cubical-type: {X ⊢ _} subtype_rel: A ⊆B cand: c∧ B all: x:A. B[x] uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  I_cube_wf fset_wf nat_wf istype-top names-hom_wf cube-set-restriction_wf nh-id_wf subtype_rel-equal equal_wf squash_wf true_wf istype-universe cube-set-restriction-id subtype_rel_self iff_weakening_equal nh-comp_wf cube-set-restriction-comp cubical_set_wf closed-cubical-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution setElimination thin rename productElimination dependent_set_memberEquality_alt dependent_pairEquality_alt lambdaEquality_alt applyEquality hypothesisEquality universeIsType instantiate extract_by_obid isectElimination hypothesis inhabitedIsType equalityTransitivity equalitySymmetry Error :memTop,  because_Cache functionIsType lambdaFormation_alt independent_pairFormation productIsType equalityIstype independent_isectElimination imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[T:\{  *  \mvdash{}  \_\}].  \mforall{}[X:j\mvdash{}].    X  \mvdash{}  closed-type-to-type(T)



Date html generated: 2020_05_20-PM-01_50_56
Last ObjectModification: 2020_03_20-PM-01_19_40

Theory : cubical!type!theory


Home Index