Nuprl Lemma : ctt-term-is_wf

[s:Atom]. ∀[t:CttTerm].  (ctt-term-is(s;t) ∈ 𝔹)


Proof




Definitions occuring in Statement :  ctt-term-is: ctt-term-is(s;t) ctt-term: CttTerm bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T atom: Atom
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ctt-term: CttTerm wfterm: wfterm(opr;sort;arity) ctt-term-is: ctt-term-is(s;t) all: x:A. B[x] or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} uiff: uiff(P;Q) and: P ∧ Q exists: x:A. B[x] bnot: ¬bb ifthenelse: if then else fi  btrue: tt assert: b bfalse: ff false: False ctt-op: CttOp subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: prop: band: p ∧b q
Lemmas referenced :  bnot_wf isvarterm_wf ctt-op_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert band_wf btrue_wf bool_cases_sqequal eqff_to_assert assert-bnot eq_atom_wf assert_of_eq_atom l_member_wf ctt-tokens_wf bfalse_wf ctt-term_wf istype-atom
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename sqequalRule introduction extract_by_obid isectElimination instantiate hypothesis hypothesisEquality dependent_functionElimination unionElimination because_Cache independent_isectElimination independent_functionElimination productElimination dependent_pairFormation_alt equalityTransitivity equalitySymmetry equalityIstype inhabitedIsType promote_hyp voidElimination lambdaFormation_alt closedConclusion tokenEquality applyEquality equalityElimination lambdaEquality_alt setIsType universeIsType atomEquality

Latex:
\mforall{}[s:Atom].  \mforall{}[t:CttTerm].    (ctt-term-is(s;t)  \mmember{}  \mBbbB{})



Date html generated: 2020_05_20-PM-08_22_25
Last ObjectModification: 2020_02_15-AM-10_13_29

Theory : cubical!type!theory


Home Index