Nuprl Lemma : empty-cubical-subset-I_cube

[I,J:fset(ℕ)].  I,0(J))


Proof




Definitions occuring in Statement :  cubical-subset: I,psi face_lattice: face_lattice(I) I_cube: A(I) lattice-0: 0 fset: fset(T) nat: uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False cubical-subset: I,psi I_cube: A(I) cube-cat: CubeCat rep-sub-sheaf: rep-sub-sheaf(C;X;P) functor-ob: ob(F) pi1: fst(t) all: x:A. B[x] top: Top name-morph-satisfies: (psi f) 1 squash: T prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt face-presheaf: 𝔽
Lemmas referenced :  cat_arrow_triple_lemma equal_wf squash_wf true_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf fl-morph-0 subtype_rel_self iff_weakening_equal I_cube_wf cubical-subset_wf lattice-0_wf bdd-distributive-lattice_wf face-presheaf_wf small_cubical_set_subtype fset_wf nat_wf face-lattice-0-not-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution sqequalRule extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis setElimination rename applyEquality lambdaEquality imageElimination isectElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality instantiate productEquality cumulativity because_Cache independent_isectElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[I,J:fset(\mBbbN{})].    (\mneg{}I,0(J))



Date html generated: 2018_05_23-AM-09_15_48
Last ObjectModification: 2018_05_20-PM-06_14_51

Theory : cubical!type!theory


Home Index