Nuprl Lemma : fl-s-fl1
∀[I:fset(ℕ)]. ∀[x:names(I)]. (((x=1))<s> = (x=1) ∈ Point(face_lattice(I+x)))
Proof
Definitions occuring in Statement :
fl-morph: <f>
,
fl1: (x=1)
,
face_lattice: face_lattice(I)
,
nc-s: s
,
add-name: I+i
,
names: names(I)
,
lattice-point: Point(l)
,
fset: fset(T)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
squash: ↓T
,
prop: ℙ
,
names: names(I)
,
subtype_rel: A ⊆r B
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
so_lambda: λ2x.t[x]
,
and: P ∧ Q
,
so_apply: x[s]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
nc-s: s
Lemmas referenced :
equal_wf,
squash_wf,
true_wf,
lattice-point_wf,
face_lattice_wf,
add-name_wf,
subtype_rel_set,
bounded-lattice-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
bounded-lattice-axioms_wf,
uall_wf,
lattice-meet_wf,
lattice-join_wf,
fl-morph-fl1,
nc-s_wf,
f-subset-add-name,
fl1_wf,
names-subtype,
iff_weakening_equal,
dM-to-FL-inc,
names_wf,
fset_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
applyEquality,
thin,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
extract_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
universeEquality,
setElimination,
rename,
sqequalRule,
instantiate,
productEquality,
cumulativity,
because_Cache,
independent_isectElimination,
dependent_functionElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed,
productElimination,
independent_functionElimination,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[I:fset(\mBbbN{})]. \mforall{}[x:names(I)]. (((x=1))<s> = (x=1))
Date html generated:
2017_10_05-AM-01_14_01
Last ObjectModification:
2017_07_28-AM-09_31_19
Theory : cubical!type!theory
Home
Index