Nuprl Lemma : nh-comp-nc-m-eq2
∀[I,K:fset(ℕ)]. ∀[i,j:ℕ]. ∀[f:K ⟶ I+i+j].  (i0) ⋅ s ⋅ f = m(i;j) ⋅ f ∈ K ⟶ I+i supposing (f i) = 0 ∈ Point(dM(K))
Proof
Definitions occuring in Statement : 
nc-m: m(i;j)
, 
nc-0: (i0)
, 
nc-s: s
, 
add-name: I+i
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
dM0: 0
, 
dM: dM(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
guard: {T}
, 
so_apply: x[s]
, 
names-hom: I ⟶ J
, 
all: ∀x:A. B[x]
, 
names: names(I)
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
nh-comp-nc-m-eq, 
equal_wf, 
squash_wf, 
true_wf, 
names-hom_wf, 
add-name_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
trivial-member-add-name2, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
dM0_wf, 
fset_wf, 
f-subset-add-name1, 
f-subset-add-name, 
nh-comp-assoc, 
nc-s_wf, 
nc-0_wf, 
iff_weakening_equal, 
nh-comp_wf, 
s-comp-s
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productEquality, 
cumulativity, 
because_Cache, 
dependent_functionElimination, 
dependent_set_memberEquality, 
intEquality, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}[I,K:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].  \mforall{}[f:K  {}\mrightarrow{}  I+i+j].    (i0)  \mcdot{}  s  \mcdot{}  f  =  m(i;j)  \mcdot{}  f  supposing  (f  i)  =  0
Date html generated:
2017_10_05-AM-01_03_26
Last ObjectModification:
2017_07_28-AM-09_26_40
Theory : cubical!type!theory
Home
Index