Nuprl Lemma : nh-comp-nc-m-eq2

[I,K:fset(ℕ)]. ∀[i,j:ℕ]. ∀[f:K ⟶ I+i+j].  (i0) ⋅ s ⋅ m(i;j) ⋅ f ∈ K ⟶ I+i supposing (f i) 0 ∈ Point(dM(K))


Proof




Definitions occuring in Statement :  nc-m: m(i;j) nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J dM0: 0 dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: squash: T true: True subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} so_apply: x[s] names-hom: I ⟶ J all: x:A. B[x] names: names(I) nat: implies:  Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nh-comp-nc-m-eq equal_wf squash_wf true_wf names-hom_wf add-name_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf trivial-member-add-name2 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self dM0_wf fset_wf f-subset-add-name1 f-subset-add-name nh-comp-assoc nc-s_wf nc-0_wf iff_weakening_equal nh-comp_wf s-comp-s
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hyp_replacement equalitySymmetry sqequalRule applyEquality lambdaEquality imageElimination equalityTransitivity universeEquality natural_numberEquality imageMemberEquality baseClosed instantiate productEquality cumulativity because_Cache dependent_functionElimination dependent_set_memberEquality intEquality independent_functionElimination productElimination

Latex:
\mforall{}[I,K:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].  \mforall{}[f:K  {}\mrightarrow{}  I+i+j].    (i0)  \mcdot{}  s  \mcdot{}  f  =  m(i;j)  \mcdot{}  f  supposing  (f  i)  =  0



Date html generated: 2017_10_05-AM-01_03_26
Last ObjectModification: 2017_07_28-AM-09_26_40

Theory : cubical!type!theory


Home Index