Nuprl Lemma : nh-comp-nc-m-eq

[I,K:fset(ℕ)]. ∀[i,j:ℕ]. ∀[f:K ⟶ I+i+j].  (i0) ⋅ s ⋅ s ⋅ m(i;j) ⋅ f ∈ K ⟶ I+i supposing (f i) 0 ∈ Point(dM(K))


Proof




Definitions occuring in Statement :  nc-m: m(i;j) nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J dM0: 0 dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names: names(I) all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: names-hom: I ⟶ J DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q guard: {T} decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q squash: T true: True iff: ⇐⇒ Q rev_implies:  Q dM0: 0 top: Top compose: g nc-0: (i0) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) nc-s: s nc-m: m(i;j)
Lemmas referenced :  trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self add-name_wf trivial-member-add-name2 names_wf equal_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM0_wf names-hom_wf fset_wf decidable__equal_int subtype_base_sq int_subtype_base squash_wf true_wf nh-comp_wf nc-s_wf f-subset-add-name nc-0_wf nh-comp-nc-m iff_weakening_equal lattice-meet-0 bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int dM0-sq-empty eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf nh-comp-sq dM-lift_wf dma-hom_wf all_wf dM_inc_wf names-subtype dM-lift-0 nh-comp-cancel nc-m_wf dM-lift-inc not-added-name
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut dependent_set_memberEquality hypothesisEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis isectElimination applyEquality intEquality independent_isectElimination because_Cache sqequalRule lambdaEquality natural_numberEquality functionExtensionality instantiate productEquality cumulativity universeEquality setElimination rename unionElimination equalityTransitivity equalitySymmetry independent_functionElimination imageElimination imageMemberEquality baseClosed productElimination hyp_replacement applyLambdaEquality isect_memberEquality voidElimination voidEquality lambdaFormation equalityElimination dependent_pairFormation promote_hyp int_eqEquality computeAll setEquality

Latex:
\mforall{}[I,K:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].  \mforall{}[f:K  {}\mrightarrow{}  I+i+j].    (i0)  \mcdot{}  s  \mcdot{}  s  \mcdot{}  f  =  m(i;j)  \mcdot{}  f  supposing  (f  i)  =  0



Date html generated: 2017_10_05-AM-01_03_21
Last ObjectModification: 2017_07_28-AM-09_26_38

Theory : cubical!type!theory


Home Index