Nuprl Lemma : nh-comp-nc-m

[I,K:fset(ℕ)]. ∀[i,j:ℕ]. ∀[f:K ⟶ I+j].  (m(i;j) ⋅ i) i ∧ j ∈ Point(dM(K)) supposing i ∈ I


Proof




Definitions occuring in Statement :  nc-m: m(i;j) add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J dM: dM(I) lattice-meet: a ∧ b lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a names: names(I) all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q guard: {T} or: P ∨ Q prop: nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] top: Top nc-m: m(i;j) compose: g implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  squash: T DeMorgan-algebra: DeMorganAlgebra names-hom: I ⟶ J true: True iff: ⇐⇒ Q rev_implies:  Q bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A
Lemmas referenced :  fset-member-add-name equal_wf fset-member_wf nat_wf int-deq_wf add-name_wf trivial-member-add-name1 strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self nh-comp-sq eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int squash_wf true_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-dMpair iff_weakening_equal eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf names-hom_wf fset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality hypothesisEquality extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache productElimination independent_isectElimination sqequalRule hypothesis inrFormation isectElimination intEquality setElimination rename applyEquality lambdaEquality natural_numberEquality isect_memberEquality voidElimination voidEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry imageElimination universeEquality instantiate productEquality cumulativity imageMemberEquality baseClosed independent_functionElimination dependent_pairFormation promote_hyp int_eqEquality computeAll axiomEquality

Latex:
\mforall{}[I,K:fset(\mBbbN{})].  \mforall{}[i,j:\mBbbN{}].  \mforall{}[f:K  {}\mrightarrow{}  I+j].    (m(i;j)  \mcdot{}  f  i)  =  f  i  \mwedge{}  f  j  supposing  i  \mmember{}  I



Date html generated: 2017_10_05-AM-01_03_15
Last ObjectModification: 2017_07_28-AM-09_26_36

Theory : cubical!type!theory


Home Index