Nuprl Lemma : dM-lift-dMpair

[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[x,y:names(I)].  ((dM-lift(J;I;f) dMpair(x;y)) x ∧ y ∈ Point(dM(J)))


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dMpair: dMpair(i;j) dM: dM(I) names: names(I) lattice-meet: a ∧ b lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names: names(I) uimplies: supposing a subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) implies:  Q squash: T all: x:A. B[x] names-hom: I ⟶ J prop: DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q guard: {T} dma-hom: dma-hom(dma1;dma2) true: True iff: ⇐⇒ Q rev_implies:  Q bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2)
Lemmas referenced :  dMpair-eq-meet sq_stable__fset-member nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self names_wf names-hom_wf fset_wf dM-lift_wf equal_wf squash_wf true_wf istype-universe lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf lattice-hom-meet bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf dM_inc_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis independent_isectElimination applyEquality intEquality because_Cache sqequalRule lambdaEquality_alt natural_numberEquality independent_functionElimination imageMemberEquality baseClosed imageElimination inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType lambdaFormation_alt equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination instantiate universeEquality productEquality cumulativity productElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[x,y:names(I)].    ((dM-lift(J;I;f)  dMpair(x;y))  =  f  x  \mwedge{}  f  y)



Date html generated: 2019_11_04-PM-05_30_46
Last ObjectModification: 2018_12_13-AM-10_02_48

Theory : cubical!type!theory


Home Index