Nuprl Lemma : pres_wf2

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)]. ∀[cA:G.𝕀 +⊢ Compositon(A)].
  (pres [phi ⊢→ t] t0 ∈ {G ⊢ _:(Path_(A)[1(𝕀)] pres-c1(G;phi;f;t;t0;cA) pres-c2(G;phi;f;t;t0;cT))[phi 
                                 |⟶ <>((app(f; t)[1])p)]})


Proof




Definitions occuring in Statement :  pres: pres [phi ⊢→ t] t0 pres-c2: pres-c2(G;phi;f;t;t0;cT) pres-c1: pres-c1(G;phi;f;t;t0;cA) composition-structure: Gamma ⊢ Compositon(A) term-to-path: <>(a) path-type: (Path_A b) partial-term-1: u[1] partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-app: app(w; u) cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} guard: {T} uimplies: supposing a
Lemmas referenced :  pres_wf pres-constraint cubical_set_cumulativity-i-j cubical-type-cumulativity2 cube-context-adjoin_wf interval-type_wf subtype_rel_self composition-structure_wf constrained-cubical-term_wf csm-ap-type_wf csm-id-adjoin_wf-interval-0 partial-term-0_wf istype-cubical-term context-subset_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf_interval thin-context-subset cubical-fun_wf cubical-type_wf cubical_set_wf partial-term-1_wf context-subset-term-subtype cubical-app_wf_fun cubical-fun-subset subset-cubical-term context-subset-is-subset path-type_wf csm-id-adjoin_wf-interval-1 pres-c1_wf composition-function-cumulativity pres-c2_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality equalitySymmetry instantiate applyEquality sqequalRule because_Cache dependent_set_memberEquality_alt equalityTransitivity universeIsType Error :memTop,  inhabitedIsType equalityIstype independent_isectElimination setElimination rename dependent_functionElimination lambdaEquality_alt

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].  \mforall{}[cA:G.\mBbbI{}  +\mvdash{}  Compositon(A)].
    (pres  f  [phi  \mvdash{}\mrightarrow{}  t]  t0  \mmember{}  \{G  \mvdash{}  \_:(Path\_(A)[1(\mBbbI{})]  pres-c1(G;phi;f;t;t0;cA)  pres-c2(G;phi;f;t;t0;cT))
                                                                  [phi  |{}\mrightarrow{}  <>((app(f;  t)[1])p)]\})



Date html generated: 2020_05_20-PM-05_34_47
Last ObjectModification: 2020_04_18-PM-11_37_33

Theory : cubical!type!theory


Home Index