Nuprl Lemma : pres-constraint

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)]. ∀[cA:G.𝕀 +⊢ Compositon(A)].
  (pres [phi ⊢→ t] t0
  G ⊢ <>((app(f; t)[1])p)
  ∈ {G, phi ⊢ _:(Path_(A)[1(𝕀)] pres-c1(G;phi;f;t;t0;cA) pres-c2(G;phi;f;t;t0;cT))})


Proof




Definitions occuring in Statement :  pres: pres [phi ⊢→ t] t0 pres-c2: pres-c2(G;phi;f;t;t0;cT) pres-c1: pres-c1(G;phi;f;t;t0;cA) composition-structure: Gamma ⊢ Compositon(A) term-to-path: <>(a) path-type: (Path_A b) partial-term-1: u[1] partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-app: app(w; u) cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) uimplies: supposing a composition-structure: Gamma ⊢ Compositon(A) all: x:A. B[x] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} true: True squash: T prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q csm-ap-term: (t)s pi1: fst(t) compose: g pi2: snd(t) csm-comp: F csm-adjoin: (s;u) csm-id: 1(X) csm-ap: (s)x csm+: tau+ csm-id-adjoin: [u] interval-0: 0(𝕀) cubical-type: {X ⊢ _} same-cubical-term: X ⊢ u=v:A presw: presw(G;phi;f;t;t0;cT) pres-a0: pres-a0(G;f;t0) pres-v: pres-v(G;phi;t;t0;cT) pres: pres [phi ⊢→ t] t0 csm-comp-structure: (cA)tau interval-1: 1(𝕀) same-cubical-type: Gamma ⊢ B face-one: (i=1) face-or: (a ∨ b) cubical-term-at: u(a) face-1: 1(𝔽) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] cubical-type-at: A(a) face-type: 𝔽 I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt pres-c2: pres-c2(G;phi;f;t;t0;cT) partial-term-0: u[0] pres-c1: pres-c1(G;phi;f;t;t0;cA) composition-function: composition-function{j:l,i:l}(Gamma;A) cube-context-adjoin: X.A context-subset: Gamma, phi cc-adjoin-cube: (v;u) face-term-implies: Gamma ⊢ (phi  psi) partial-term-1: u[1]
Lemmas referenced :  pres_wf csm+_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf_interval csm-interval-type context-subset-term-subtype cubical-fun_wf csm-ap-term_wf face-type_wf csm-face-type cubical-app_wf_fun context-subset_wf thin-context-subset cubical-fun-subset subset-cubical-term face-or_wf face-one_wf cc-snd_wf sub_cubical_set-cumulativity1 sub_cubical_set_functionality context-subset-is-subset csm-ap-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf interval-1_wf presw_wf composition-function-cumulativity constrained-cubical-term-eqcd composition-structure_wf interval-0_wf partial-term-0_wf istype-cubical-term cubical-type_wf cubical_set_wf cubical-term-eqcd csm-comp-type equal_wf squash_wf true_wf istype-universe cube_set_map_wf cc-fst+-comp-0 subtype_rel_self iff_weakening_equal pres-a0_wf csm-id-adjoin_wf-interval-0 csm-same-cubical-term csm-cubical-app csm-cubical-fun fill_term_0 csm-context-subset-subtype2 term-to-path-subset comp_term_wf csm-comp-structure-composition-function csm+_wf_interval composition-structure-cumulativity term-to-path-equal pres-c1_wf pres-c2_wf csm-ap-term-wf-subset face-term-implies-same csm-id-adjoin_wf-interval-1 cubical-term_wf cubical-type-cumulativity2 cubical-term-equal face-1_wf I_cube_wf fset_wf nat_wf face-type-at lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf lattice-1_wf cubical-term-at_wf lattice-1-join bdd-distributive-lattice-subtype-bdd-lattice dM-to-FL-dM1 context-1-subset fill_term_1 context-adjoin-subset4 csm-comp_term csm-comp-structure_wf csm-face-or csm_id_adjoin_fst_term_lemma cubical-type-at_wf_face-type lattice-join-0 dM-to-FL-dM0 pres-v_wf face-term-implies_wf csm-ap-id-term thin-context-subset-adjoin composition-function_wf cube_set_map_cumulativity-i-j csm-comp-assoc csm-id-comp csm-comp_wf I_cube_pair_redex_lemma cube_set_restriction_pair_lemma istype-cubical-type-at csm-equal cc-adjoin-cube_wf csm-comp-term subset-cubical-type csm-id_wf subset-cubical-term2 sub_cubical_set_self csm-ap-id-type partial-term-1_wf subtype_rel_transitivity face-term-implies-subset face-term-implies-or1 path-type-subset
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate sqequalRule Error :memTop,  applyEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination setElimination rename dependent_functionElimination lambdaEquality_alt cumulativity universeIsType universeEquality inhabitedIsType dependent_set_memberEquality_alt hyp_replacement natural_numberEquality imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination applyLambdaEquality equalityIstype lambdaFormation_alt functionExtensionality productEquality isectEquality dependent_pairEquality_alt

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].  \mforall{}[cA:G.\mBbbI{}  +\mvdash{}  Compositon(A)].
    (pres  f  [phi  \mvdash{}\mrightarrow{}  t]  t0  =  G  \mvdash{}  <>((app(f;  t)[1])p))



Date html generated: 2020_05_20-PM-05_34_31
Last ObjectModification: 2020_05_02-PM-03_46_26

Theory : cubical!type!theory


Home Index