Nuprl Lemma : trans-equiv-path_wf

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}].
  (trans-equiv-path(G;A;B;f) ∈ {G ⊢ _:(decode(A) ⟶ decode(B))})


Proof




Definitions occuring in Statement :  trans-equiv-path: trans-equiv-path(G;A;B;f) universe-decode: decode(t) cubical-universe: c𝕌 cubical-equiv: Equiv(T;A) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} trans-equiv-path: trans-equiv-path(G;A;B;f) uimplies: supposing a let: let all: x:A. B[x] composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
Lemmas referenced :  universe-decode_wf csm-ap-term-universe cubical_set_cumulativity-i-j cube-context-adjoin_wf cubical-type-cumulativity2 cc-fst_wf csm-ap-term_wf cubical-equiv-p cubical-term-eqcd cc-snd_wf istype-cubical-term cubical-equiv_wf istype-cubical-universe-term cubical_set_wf csm-universe-decode cubical-lam_wf transprt-const_wf csm-ap-type_wf cubical-app_wf_fun equiv-fun_wf csm-comp-structure_wf2 universe-comp-fun_wf subtype_rel_self composition-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt hyp_replacement universeIsType dependent_functionElimination Error :memTop

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].
    (trans-equiv-path(G;A;B;f)  \mmember{}  \{G  \mvdash{}  \_:(decode(A)  {}\mrightarrow{}  decode(B))\})



Date html generated: 2020_05_20-PM-07_39_48
Last ObjectModification: 2020_04_30-PM-04_47_43

Theory : cubical!type!theory


Home Index