Nuprl Lemma : p5eu

e:EuclideanPlane. ∀a,b,c:Point.  ((ab=ac ∧ Triangle(a;b;c))  (∃j,k:Point. jbc kcb))


Proof




Definitions occuring in Statement :  eu-cong-angle: abc xyz eu-tri: Triangle(a;b;c) euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane eu-tri: Triangle(a;b;c) exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] eu-cong-angle: abc xyz cand: c∧ B not: ¬A false: False uimplies: supposing a uiff: uiff(P;Q)
Lemmas referenced :  eu-congruent_wf eu-tri_wf eu-point_wf euclidean-plane_wf not_wf equal_wf eu-extend-exists eu-cong-angle_wf exists_wf eu-between-eq_wf eu-congruence-identity-sym false_wf eu-between-eq-trivial-right eu-congruent-iff-length eu-congruent-flip eu-congruent-refl eu-length-flip eu-three-segment eu-five-segment'
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin productEquality cut introduction extract_by_obid isectElimination setElimination rename hypothesisEquality hypothesis dependent_functionElimination dependent_set_memberEquality dependent_pairFormation sqequalRule lambdaEquality because_Cache equalitySymmetry hyp_replacement Error :applyLambdaEquality,  independent_functionElimination independent_isectElimination voidElimination equalityTransitivity equalityEquality universeEquality independent_pairFormation

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    ((ab=ac  \mwedge{}  Triangle(a;b;c))  {}\mRightarrow{}  (\mexists{}j,k:Point.  jbc  =  kcb))



Date html generated: 2016_10_26-AM-07_45_51
Last ObjectModification: 2016_07_12-AM-08_13_24

Theory : euclidean!geometry


Home Index