Nuprl Lemma : bnot-left-test
∀g:OrientedPlane. ∀xs:{xs:Point List| geo-general-position(g;xs)} . ∀i:ℕ||xs||. ∀j:{j:ℕ||xs||| ¬(i = j ∈ ℤ)} .
∀k:{k:ℕ||xs||| (¬(k = i ∈ ℤ)) ∧ (¬(k = j ∈ ℤ))} .
  ¬bi L jk = i L kj
Proof
Definitions occuring in Statement : 
left-test: i L jk
, 
geo-general-position: geo-general-position(g;xs)
, 
oriented-plane: OrientedPlane
, 
geo-point: Point
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
bnot: ¬bb
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
left-test: i L jk
, 
all: ∀x:A. B[x]
, 
oriented-plane: Error :oriented-plane, 
less_than: a < b
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
lelt: i ≤ j < k
Lemmas referenced : 
geo-general-position_wf, 
list_wf, 
equal_wf, 
not_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry-_wf, 
Error :oriented-plane_wf, 
subtype_rel_transitivity, 
Error :oriented-plane-subtype, 
basic-geometry--subtype, 
geo-point_wf, 
length_wf, 
int_seg_wf, 
set_wf, 
geo-lsep_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
int_seg_properties, 
squash_wf, 
sq_stable__not, 
sq_stable__and, 
select_wf, 
bnot-isleft, 
lelt_wf, 
geo-general-position-implies
Rules used in proof : 
intEquality, 
productEquality, 
lambdaEquality, 
because_Cache, 
rename, 
setElimination, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesisEquality, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
voidEquality, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
approximateComputation, 
unionElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
productElimination, 
voidElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
dependent_functionElimination
Latex:
\mforall{}g:OrientedPlane.  \mforall{}xs:\{xs:Point  List|  geo-general-position(g;xs)\}  .  \mforall{}i:\mBbbN{}||xs||.  \mforall{}j:\{j:\mBbbN{}||xs||| 
                                                                                                                                                                      \mneg{}(i  =  j)\}  .
\mforall{}k:\{k:\mBbbN{}||xs|||  (\mneg{}(k  =  i))  \mwedge{}  (\mneg{}(k  =  j))\}  .
    \mneg{}\msubb{}i  L  jk  =  i  L  kj
Date html generated:
2017_10_02-PM-06_51_27
Last ObjectModification:
2017_08_08-PM-00_39_08
Theory : euclidean!plane!geometry
Home
Index