Nuprl Lemma : cong-angle-out-all-iff

e:BasicGeometry. ∀a,b,c,x,y,z:Point.
  ((((b ≠ a ∧ b ≠ c) ∧ y ≠ x) ∧ y ≠ z)
   (abc ≅a xyz
     ⇐⇒ ∀a',c',x',z':Point.
           ((((out(b a'a) ∧ out(b c'c)) ∧ out(y x'x)) ∧ out(y z'z) ∧ ba' ≅ yx' ∧ bc' ≅ yz')  a'c' ≅ x'z')))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a rev_implies:  Q exists: x:A. B[x] basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- geo-strict-between: a-b-c uiff: uiff(P;Q) squash: T true: True cand: c∧ B
Lemmas referenced :  geo-out_wf geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle_wf geo-sep_wf geo-point_wf out-preserves-angle-cong_1 geo-out_inversion cong-angle-out-aux_1 cong-angle-out-aux2_1 geo-proper-extend-exists geo-between-out euclidean-plane-axioms geo-sep-sym geo-strict-between-sep1 subtype_rel_self basic-geometry-_wf geo-between-symmetry geo-strict-between-implies-between geo-add-length-between geo-congruent-symmetry geo-congruent-iff-length geo-add-length_wf squash_wf true_wf geo-length-type_wf geo-add-length-comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin independent_pairFormation sqequalRule productIsType universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination because_Cache inhabitedIsType functionIsType dependent_functionElimination independent_functionElimination rename lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.
    ((((b  \mneq{}  a  \mwedge{}  b  \mneq{}  c)  \mwedge{}  y  \mneq{}  x)  \mwedge{}  y  \mneq{}  z)
    {}\mRightarrow{}  (abc  \mcong{}\msuba{}  xyz
          \mLeftarrow{}{}\mRightarrow{}  \mforall{}a',c',x',z':Point.
                      ((((out(b  a'a)  \mwedge{}  out(b  c'c))  \mwedge{}  out(y  x'x))  \mwedge{}  out(y  z'z)  \mwedge{}  ba'  \mcong{}  yx'  \mwedge{}  bc'  \mcong{}  yz')
                      {}\mRightarrow{}  a'c'  \mcong{}  x'z')))



Date html generated: 2019_10_16-PM-01_31_38
Last ObjectModification: 2018_10_09-PM-00_08_17

Theory : euclidean!plane!geometry


Home Index