Nuprl Lemma : eu-eq_dist-axiomsC-Pasch
∀e:EuclideanPlane. ∀x,y,z,u,t:Point.
  (((((Dbet(e;x;t;u) ∧ Dsep(e;x;t)) ∧ Dbet(e;y;u;z)) ∧ Dtri(e;x;y;u)) ∧ Dtri(e;u;z;t))
  
⇒ (∃v:Point. ((Dbet(e;x;v;y) ∧ Dsep(e;x;v) ∧ Dsep(e;v;y)) ∧ Dbet(e;z;t;v) ∧ Dsep(e;z;t) ∧ Dsep(e;t;v))))
Proof
Definitions occuring in Statement : 
dist-bet: Dbet(g;a;b;c)
, 
dist-tri: Dtri(g;a;b;c)
, 
dist-sep: Dsep(g;a;b)
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
guard: {T}
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
geo-strict-between: a-b-c
, 
iff: P 
⇐⇒ Q
, 
sq_exists: ∃x:A [B[x]]
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
basic-geometry-: BasicGeometry-
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
lsep-all-sym, 
Euclid-Prop20_cycle, 
geo-lsep_wf, 
outer-pasch-strict, 
dist-bet_wf, 
dist-sep_wf, 
dist-tri_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
Dbet-to-between, 
geo-between-symmetry, 
geo-between_wf, 
Dsep-to-sep, 
Dtri-iff-lsep, 
lsep-implies-sep, 
geo-sep-sym, 
geo-strict-between_wf, 
sq_stable__and, 
sq_stable__geo-strict-between, 
geo-strict-between-implies-between, 
Dbet-iff-between, 
Dsep-iff-sep
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
universeIsType, 
isectElimination, 
applyEquality, 
sqequalRule, 
productIsType, 
inhabitedIsType, 
instantiate, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
setElimination, 
rename, 
isect_memberEquality_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation_alt
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}x,y,z,u,t:Point.
    (((((Dbet(e;x;t;u)  \mwedge{}  Dsep(e;x;t))  \mwedge{}  Dbet(e;y;u;z))  \mwedge{}  Dtri(e;x;y;u))  \mwedge{}  Dtri(e;u;z;t))
    {}\mRightarrow{}  (\mexists{}v:Point
              ((Dbet(e;x;v;y)  \mwedge{}  Dsep(e;x;v)  \mwedge{}  Dsep(e;v;y))  \mwedge{}  Dbet(e;z;t;v)  \mwedge{}  Dsep(e;z;t)  \mwedge{}  Dsep(e;t;v))))
Date html generated:
2019_10_16-PM-02_58_39
Last ObjectModification:
2019_04_22-PM-02_21_45
Theory : euclidean!plane!geometry
Home
Index