Nuprl Lemma : eu-eq_dist-axiomsC-Pasch

e:EuclideanPlane. ∀x,y,z,u,t:Point.
  (((((Dbet(e;x;t;u) ∧ Dsep(e;x;t)) ∧ Dbet(e;y;u;z)) ∧ Dtri(e;x;y;u)) ∧ Dtri(e;u;z;t))
   (∃v:Point. ((Dbet(e;x;v;y) ∧ Dsep(e;x;v) ∧ Dsep(e;v;y)) ∧ Dbet(e;z;t;v) ∧ Dsep(e;z;t) ∧ Dsep(e;t;v))))


Proof




Definitions occuring in Statement :  dist-bet: Dbet(g;a;b;c) dist-tri: Dtri(g;a;b;c) dist-sep: Dsep(g;a;b) euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T guard: {T} cand: c∧ B uall: [x:A]. B[x] subtype_rel: A ⊆B prop: uimplies: supposing a geo-strict-between: a-b-c iff: ⇐⇒ Q sq_exists: x:A [B[x]] euclidean-plane: EuclideanPlane sq_stable: SqStable(P) squash: T exists: x:A. B[x] basic-geometry-: BasicGeometry- rev_implies:  Q
Lemmas referenced :  lsep-all-sym Euclid-Prop20_cycle geo-lsep_wf outer-pasch-strict dist-bet_wf dist-sep_wf dist-tri_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf Dbet-to-between geo-between-symmetry geo-between_wf Dsep-to-sep Dtri-iff-lsep lsep-implies-sep geo-sep-sym geo-strict-between_wf sq_stable__and sq_stable__geo-strict-between geo-strict-between-implies-between Dbet-iff-between Dsep-iff-sep
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis because_Cache universeIsType isectElimination applyEquality sqequalRule productIsType inhabitedIsType instantiate independent_isectElimination dependent_set_memberEquality_alt independent_pairFormation setElimination rename isect_memberEquality_alt imageMemberEquality baseClosed imageElimination dependent_pairFormation_alt

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}x,y,z,u,t:Point.
    (((((Dbet(e;x;t;u)  \mwedge{}  Dsep(e;x;t))  \mwedge{}  Dbet(e;y;u;z))  \mwedge{}  Dtri(e;x;y;u))  \mwedge{}  Dtri(e;u;z;t))
    {}\mRightarrow{}  (\mexists{}v:Point
              ((Dbet(e;x;v;y)  \mwedge{}  Dsep(e;x;v)  \mwedge{}  Dsep(e;v;y))  \mwedge{}  Dbet(e;z;t;v)  \mwedge{}  Dsep(e;z;t)  \mwedge{}  Dsep(e;t;v))))



Date html generated: 2019_10_16-PM-02_58_39
Last ObjectModification: 2019_04_22-PM-02_21_45

Theory : euclidean!plane!geometry


Home Index