Nuprl Lemma : geo-gt-implies-point2

e:EuclideanPlane. ∀a,b,c,d:Point.  (ab > cd  c ≠  (∃f:Point. (c_d_f ∧ cf ≅ ab)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-gt: cd > ab geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} member: t ∈ T basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane exists: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B uall: [x:A]. B[x] uimplies: supposing a prop: cand: c∧ B stable: Stable{P} uiff: uiff(P;Q) not: ¬A false: False iff: ⇐⇒ Q geo-strict-between: a-b-c
Lemmas referenced :  geo-gt-sep geo-proper-extend-exists geo-O_wf geo-X_wf geo-sep-sym geo-sep-O-X geo-strict-between-sep3 euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf geo-gt_wf geo-point_wf geo-gt-implies-point stable__geo-between double-negation-hyp-elim geo-strict-between_wf geo-congruent_wf not_wf geo-between_wf geo-construction-unicity geo-strict-between-implies-between geo-between-symmetry geo-between-outer-trans geo-congruent-iff-length istype-void geo-congruent_functionality geo-eq_weakening geo-strict-between_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid hypothesis thin sqequalHypSubstitution sqequalRule dependent_functionElimination hypothesisEquality independent_functionElimination setElimination rename because_Cache productElimination applyEquality instantiate isectElimination independent_isectElimination universeIsType inhabitedIsType dependent_pairFormation_alt productEquality equalityTransitivity equalitySymmetry productIsType independent_pairFormation functionIsType voidElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (ab  >  cd  {}\mRightarrow{}  c  \mneq{}  d  {}\mRightarrow{}  (\mexists{}f:Point.  (c\_d\_f  \mwedge{}  cf  \mcong{}  ab)))



Date html generated: 2019_10_16-PM-01_17_22
Last ObjectModification: 2019_08_07-PM-02_53_40

Theory : euclidean!plane!geometry


Home Index