Nuprl Lemma : hp-angle-sum-subst3

g:EuclideanPlane. ∀a,b,c,d,e,f,x,y,z,i,j,k:Point.  (abc def ≅ xyz  xyz ≅a ijk  yz  abc def ≅ ijk)


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q hp-angle-sum: abc xyz ≅ def exists: x:A. B[x] and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry geo-cong-angle: abc ≅a xyz geo-out: out(p ab) cand: c∧ B not: ¬A false: False basic-geometry-: BasicGeometry- uiff: uiff(P;Q) geo-tri: Triangle(a;b;c) geo-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced :  geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle_wf hp-angle-sum_wf geo-point_wf geo-sep-sym out-cong-angle geo-cong-angle-symm2 geo-cong-angle-transitivity out-preserves-lsep lsep-all-sym geo-out-interior-point-exists geo-between-sep istype-void geo-congruent-strictbetween-exists geo-inner-five-segment geo-between-symmetry geo-strict-between-implies-between geo-congruent-iff-length geo-length-flip p8geo geo-strict-between-sep2 geo-congruent-symmetry geo-congruent-sep geo-strict-between-sep3 geo-between-trivial geo-between_wf geo-out_wf geo-strict-between_wf out-preserves-angle-cong_1 geo-out_transitivity geo-out_inversion geo-out_weakening geo-eq_weakening euclidean-plane-axioms
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule dependent_functionElimination inhabitedIsType because_Cache independent_functionElimination independent_pairFormation voidElimination productIsType functionIsType equalityTransitivity equalitySymmetry dependent_pairFormation_alt

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f,x,y,z,i,j,k:Point.
    (abc  +  def  \mcong{}  xyz  {}\mRightarrow{}  xyz  \mcong{}\msuba{}  ijk  {}\mRightarrow{}  x  \#  yz  {}\mRightarrow{}  abc  +  def  \mcong{}  ijk)



Date html generated: 2019_10_16-PM-02_07_31
Last ObjectModification: 2019_06_11-PM-01_31_16

Theory : euclidean!plane!geometry


Home Index