Nuprl Lemma : hp-angle-sum-subst3
∀g:EuclideanPlane. ∀a,b,c,d,e,f,x,y,z,i,j,k:Point.  (abc + def ≅ xyz 
⇒ xyz ≅a ijk 
⇒ x # yz 
⇒ abc + def ≅ ijk)
Proof
Definitions occuring in Statement : 
hp-angle-sum: abc + xyz ≅ def
, 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
hp-angle-sum: abc + xyz ≅ def
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
geo-cong-angle: abc ≅a xyz
, 
geo-out: out(p ab)
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
basic-geometry-: BasicGeometry-
, 
uiff: uiff(P;Q)
, 
geo-tri: Triangle(a;b;c)
, 
geo-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced : 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-cong-angle_wf, 
hp-angle-sum_wf, 
geo-point_wf, 
geo-sep-sym, 
out-cong-angle, 
geo-cong-angle-symm2, 
geo-cong-angle-transitivity, 
out-preserves-lsep, 
lsep-all-sym, 
geo-out-interior-point-exists, 
geo-between-sep, 
istype-void, 
geo-congruent-strictbetween-exists, 
geo-inner-five-segment, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
geo-congruent-iff-length, 
geo-length-flip, 
p8geo, 
geo-strict-between-sep2, 
geo-congruent-symmetry, 
geo-congruent-sep, 
geo-strict-between-sep3, 
geo-between-trivial, 
geo-between_wf, 
geo-out_wf, 
geo-strict-between_wf, 
out-preserves-angle-cong_1, 
geo-out_transitivity, 
geo-out_inversion, 
geo-out_weakening, 
geo-eq_weakening, 
euclidean-plane-axioms
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
inhabitedIsType, 
because_Cache, 
independent_functionElimination, 
independent_pairFormation, 
voidElimination, 
productIsType, 
functionIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation_alt
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f,x,y,z,i,j,k:Point.
    (abc  +  def  \mcong{}  xyz  {}\mRightarrow{}  xyz  \mcong{}\msuba{}  ijk  {}\mRightarrow{}  x  \#  yz  {}\mRightarrow{}  abc  +  def  \mcong{}  ijk)
Date html generated:
2019_10_16-PM-02_07_31
Last ObjectModification:
2019_06_11-PM-01_31_16
Theory : euclidean!plane!geometry
Home
Index