Nuprl Lemma : proj-point-sep_defB
∀e:EuclideanParPlane. ∀p,q:Point + Line.
  (((∃n:Line?. ((¬pp-sep(e;p;n)) ∧ pp-sep(e;q;n))) ∧ (∀l,m:Line.  (l \/ m 
⇒ (∀n:Line. (l \/ n ∨ m \/ n)))))
  
⇒ proj-point-sep(e;p;q))
Proof
Definitions occuring in Statement : 
proj-point-sep: proj-point-sep(eu;p;q)
, 
pp-sep: pp-sep(eu;p;l)
, 
euclidean-parallel-plane: EuclideanParPlane
, 
geo-intersect: L \/ M
, 
geo-line: Line
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
unit: Unit
, 
union: left + right
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
pp-sep: pp-sep(eu;p;l)
, 
proj-point-sep: proj-point-sep(eu;p;q)
, 
true: True
, 
member: t ∈ T
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
euclidean-parallel-plane: EuclideanParPlane
, 
or: P ∨ Q
, 
geo-line: Line
, 
geo-plsep: p # l
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
exists_wf, 
geo-line_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-planes-subtype, 
subtype_rel_transitivity, 
euclidean-parallel-plane_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
unit_wf2, 
not_wf, 
pp-sep_wf, 
all_wf, 
geo-intersect_wf, 
geoline-subtype1, 
or_wf, 
geo-point_wf, 
lsep-iff-all-sep, 
not-lsep-iff-colinear, 
geo-sep-sym, 
geo-intersect-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
natural_numberEquality, 
independent_functionElimination, 
voidElimination, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
unionEquality, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
functionEquality, 
setElimination, 
rename
Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}p,q:Point  +  Line.
    (((\mexists{}n:Line?.  ((\mneg{}pp-sep(e;p;n))  \mwedge{}  pp-sep(e;q;n)))
    \mwedge{}  (\mforall{}l,m:Line.    (l  \mbackslash{}/  m  {}\mRightarrow{}  (\mforall{}n:Line.  (l  \mbackslash{}/  n  \mvee{}  m  \mbackslash{}/  n)))))
    {}\mRightarrow{}  proj-point-sep(e;p;q))
Date html generated:
2018_05_22-PM-01_16_21
Last ObjectModification:
2018_05_19-PM-11_16_40
Theory : euclidean!plane!geometry
Home
Index