Nuprl Lemma : segment-intersection

e:HeytingGeometry. ∀a,b,c:Point.  (c ab  (∃p,q:Point. (Colinear(a;b;p) ∧ c-p-q)))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] exists: x:A. B[x] cand: c∧ B and: P ∧ Q basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane heyting-geometry: HeytingGeometry basic-geometry-: BasicGeometry- heyting-geometry: Error :heyting-geometry,  subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) so_apply: x[s] so_lambda: λ2x.t[x]
Lemmas referenced :  geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf heyting-geometry_wf subtype_rel_transitivity heyting-geometry-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-triangle_wf geo-proper-extend-exists geo-sep-sym geo-triangle-property geo-left-axioms_wf basic-geo-axioms_wf subtype_rel_self geo-strict-between-sym geo-inner-pasch-ex Error :geo-triangle_wf,  lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-strict-between-implies-colinear geo-colinear-is-colinear-set geo-strict-between-sep1 geo-triangle-symmetry geo-triangle-colinear exists_wf geo-strict-between_wf geo-colinear_wf
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution rename productElimination independent_functionElimination dependent_functionElimination cumulativity productEquality setEquality setElimination dependent_set_memberEquality baseClosed imageMemberEquality independent_pairFormation natural_numberEquality voidEquality voidElimination isect_memberEquality lambdaEquality dependent_pairFormation

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.    (c  \#  ab  {}\mRightarrow{}  (\mexists{}p,q:Point.  (Colinear(a;b;p)  \mwedge{}  c-p-q)))



Date html generated: 2017_10_02-PM-07_05_15
Last ObjectModification: 2017_08_06-PM-10_25_59

Theory : euclidean!plane!geometry


Home Index