Nuprl Lemma : p2J_on

[a,b:ℙ^2].  p2J(a;b) on supposing a ≠ b


Proof




Definitions occuring in Statement :  p2J: p2J(a;b) proj-incidence: on p proj-sep: a ≠ b real-proj: ^n uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) p2J: p2J(a;b) eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bfalse: ff prop: nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q real-proj: ^n real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T true: True all: x:A. B[x] req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  p2-incidence p2J_wf proj-sep_wf real-proj_wf false_wf le_wf rsub_wf radd_wf rmul_wf lelt_wf int-to-real_wf itermSubtract_wf itermAdd_wf itermMultiply_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination sqequalRule because_Cache dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation applyEquality setElimination rename imageMemberEquality baseClosed dependent_functionElimination approximateComputation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[a,b:\mBbbP{}\^{}2].    p2J(a;b)  on  a  supposing  a  \mneq{}  b



Date html generated: 2017_10_05-AM-00_20_29
Last ObjectModification: 2017_06_17-AM-10_09_48

Theory : inner!product!spaces


Home Index