Nuprl Lemma : p2J_on
∀[a,b:ℙ^2].  p2J(a;b) on a supposing a ≠ b
Proof
Definitions occuring in Statement : 
p2J: p2J(a;b)
, 
proj-incidence: v on p
, 
proj-sep: a ≠ b
, 
real-proj: ℙ^n
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
p2J: p2J(a;b)
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
real-proj: ℙ^n
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
all: ∀x:A. B[x]
, 
req_int_terms: t1 ≡ t2
, 
top: Top
Lemmas referenced : 
p2-incidence, 
p2J_wf, 
proj-sep_wf, 
real-proj_wf, 
false_wf, 
le_wf, 
rsub_wf, 
radd_wf, 
rmul_wf, 
lelt_wf, 
int-to-real_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
productElimination, 
sqequalRule, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
applyEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[a,b:\mBbbP{}\^{}2].    p2J(a;b)  on  a  supposing  a  \mneq{}  b
Date html generated:
2017_10_05-AM-00_20_29
Last ObjectModification:
2017_06_17-AM-10_09_48
Theory : inner!product!spaces
Home
Index