Nuprl Lemma : p2J_wf
∀[a,b:ℙ^2].  p2J(a;b) ∈ ℙ^2 supposing a ≠ b
Proof
Definitions occuring in Statement : 
p2J: p2J(a;b)
, 
proj-sep: a ≠ b
, 
real-proj: ℙ^n
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
p2J: p2J(a;b)
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
real-proj: ℙ^n
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
rneq: x ≠ y
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat_plus: ℕ+
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
eq_int: (i =z j)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
rsub_wf, 
rmul_wf, 
lelt_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_seg_wf, 
proj-sep-implies, 
real-vec_wf, 
false_wf, 
le_wf, 
exists_wf, 
rneq_wf, 
int-to-real_wf, 
proj-sep_wf, 
real-proj_wf, 
decidable__equal_int, 
int_subtype_base, 
int_seg_properties, 
nat_plus_properties, 
full-omega-unsat, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
int_seg_cases, 
int_seg_subtype, 
intformand_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
rless-implies-rless, 
rless_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
addEquality, 
axiomEquality, 
isect_memberEquality, 
intEquality, 
imageElimination, 
approximateComputation, 
int_eqEquality, 
voidEquality, 
hypothesis_subsumption, 
inrFormation, 
inlFormation
Latex:
\mforall{}[a,b:\mBbbP{}\^{}2].    p2J(a;b)  \mmember{}  \mBbbP{}\^{}2  supposing  a  \mneq{}  b
Date html generated:
2017_10_05-AM-00_20_16
Last ObjectModification:
2017_06_20-PM-02_16_38
Theory : inner!product!spaces
Home
Index