Nuprl Lemma : p2J_wf

[a,b:ℙ^2].  p2J(a;b) ∈ ℙ^2 supposing a ≠ b


Proof




Definitions occuring in Statement :  p2J: p2J(a;b) proj-sep: a ≠ b real-proj: ^n uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a p2J: p2J(a;b) real-vec: ^n int_seg: {i..j-} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q real-proj: ^n lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: less_than: a < b squash: T true: True bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) rneq: x ≠ y rless: x < y sq_exists: x:{A| B[x]} nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top eq_int: (i =z j) req_int_terms: t1 ≡ t2
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int rsub_wf rmul_wf lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_wf proj-sep-implies real-vec_wf false_wf le_wf exists_wf rneq_wf int-to-real_wf proj-sep_wf real-proj_wf decidable__equal_int int_subtype_base int_seg_properties nat_plus_properties full-omega-unsat intformless_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf int_seg_cases int_seg_subtype intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma rless-implies-rless rless_wf itermSubtract_wf itermMultiply_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination applyEquality dependent_set_memberEquality independent_pairFormation imageMemberEquality hypothesisEquality baseClosed equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination addEquality axiomEquality isect_memberEquality intEquality imageElimination approximateComputation int_eqEquality voidEquality hypothesis_subsumption inrFormation inlFormation

Latex:
\mforall{}[a,b:\mBbbP{}\^{}2].    p2J(a;b)  \mmember{}  \mBbbP{}\^{}2  supposing  a  \mneq{}  b



Date html generated: 2017_10_05-AM-00_20_16
Last ObjectModification: 2017_06_20-PM-02_16_38

Theory : inner!product!spaces


Home Index