Nuprl Lemma : p2-incidence

[p,v:ℙ^2].  uiff(v on p;((((v 0) (p 0)) ((v 1) (p 1))) (v 2) (p 2)) r0)


Proof




Definitions occuring in Statement :  proj-incidence: on p real-proj: ^n rsub: y req: y rmul: b radd: b int-to-real: r(n) uiff: uiff(P;Q) uall: [x:A]. B[x] apply: a natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a real-proj: ^n real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: less_than: a < b squash: T true: True nat: proj-incidence: on p subtype_rel: A ⊆B proj-rev: proj-rev(n;p) dot-product: x⋅y subtract: m so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top lt_int: i <j eq_int: (i =z j) req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rsub_wf radd_wf rmul_wf false_wf lelt_wf int-to-real_wf proj-incidence_wf le_wf dot-product_wf proj-rev_wf real-proj_wf req_wf rsum_wf ifthenelse_wf lt_int_wf real_wf rminus_wf int_seg_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf eq_int_wf assert_of_eq_int int_subtype_base neg_assert_of_eq_int subtract_wf subtract-add-cancel decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf req-implies-req itermSubtract_wf itermMultiply_wf itermMinus_wf req-iff-rsub-is-0 req_functionality rsum_unroll req_weakening radd_functionality rsum_single real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality setElimination rename because_Cache hypothesis sqequalRule dependent_set_memberEquality natural_numberEquality lambdaFormation imageMemberEquality hypothesisEquality baseClosed independent_functionElimination addEquality lambdaEquality productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry unionElimination equalityElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity voidElimination intEquality approximateComputation int_eqEquality voidEquality

Latex:
\mforall{}[p,v:\mBbbP{}\^{}2].    uiff(v  on  p;((((v  0)  *  (p  0))  +  ((v  1)  *  (p  1)))  -  (v  2)  *  (p  2))  =  r0)



Date html generated: 2017_10_05-AM-00_19_55
Last ObjectModification: 2017_06_17-AM-10_08_53

Theory : inner!product!spaces


Home Index