Nuprl Lemma : p2J_on_symm
∀[a,b:ℙ^2].  p2J(a;b) on b supposing a ≠ b
Proof
Definitions occuring in Statement : 
p2J: p2J(a;b)
, 
proj-incidence: v on p
, 
proj-sep: a ≠ b
, 
real-proj: ℙ^n
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
proj-incidence: v on p
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
real-proj: ℙ^n
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
proj-sep_symmetry, 
req_witness, 
dot-product_wf, 
false_wf, 
le_wf, 
p2J_wf, 
real-proj_wf, 
proj-rev_wf, 
int-to-real_wf, 
proj-sep_wf, 
proj-incidence_functionality, 
p2J_symmetry, 
proj-eq_weakening, 
p2J_on
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
isectElimination, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination
Latex:
\mforall{}[a,b:\mBbbP{}\^{}2].    p2J(a;b)  on  b  supposing  a  \mneq{}  b
Date html generated:
2017_10_05-AM-00_20_40
Last ObjectModification:
2017_06_17-AM-10_10_00
Theory : inner!product!spaces
Home
Index