Nuprl Lemma : proj-sep_symmetry

n:ℕ. ∀a,b:ℙ^n.  (a ≠  b ≠ a)


Proof




Definitions occuring in Statement :  proj-sep: a ≠ b real-proj: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q proj-sep: a ≠ b and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] nat: real-vec-sep: a ≠ b rless: x < y sq_exists: x:{A| B[x]} subtype_rel: A ⊆B real: nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top sq_stable: SqStable(P) squash: T guard: {T} iff: ⇐⇒ Q real-vec-mul: a*X req-vec: req-vec(n;x;y) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rev_implies:  Q true: True so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) absval: |i| sq_type: SQType(T)
Lemmas referenced :  proj-sep_wf real-proj_wf nat_wf real-vec-sep-symmetry sq_stable__less_than int-to-real_wf real_wf real-vec-dist_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf punit_wf real-vec_wf req_wf real-vec-norm_wf real-vec-mul_wf real-vec-dist-dilation int_seg_wf rmul_wf int_seg_properties intformless_wf int_formula_prop_less_lemma itermSubtract_wf itermMultiply_wf req-iff-rsub-is-0 rabs_wf real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma req_functionality real-vec-dist_functionality req-vec_weakening req_weakening rless_functionality rleq_wf rless_wf squash_wf true_wf rabs-int iff_weakening_equal subtype_base_sq set_subtype_base int_subtype_base false_wf absval_wf rless-implies-rless rsub_wf rmul_functionality real-vec-dist-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution independent_pairFormation productElimination thin promote_hyp cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis dependent_functionElimination dependent_set_memberEquality addEquality setElimination rename natural_numberEquality applyEquality lambdaEquality sqequalRule because_Cache unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality setEquality minusEquality imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate cumulativity

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbP{}\^{}n.    (a  \mneq{}  b  {}\mRightarrow{}  b  \mneq{}  a)



Date html generated: 2017_10_05-AM-00_17_31
Last ObjectModification: 2017_06_18-PM-02_03_55

Theory : inner!product!spaces


Home Index