Nuprl Lemma : p2J_symmetry

[a,b:ℙ^2].  p2J(a;b) p2J(b;a) supposing a ≠ b


Proof




Definitions occuring in Statement :  p2J: p2J(a;b) proj-eq: b proj-sep: a ≠ b real-proj: ^n uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q squash: T proj-eq: b subtype_rel: A ⊆B prop: nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A exists: x:A. B[x] rneq: x ≠ y or: P ∨ Q less_than: a < b true: True req-vec: req-vec(n;x;y) real-proj: ^n p2J: p2J(a;b) real-vec-mul: a*X int_seg: {i..j-} decidable: Dec(P) sq_type: SQType(T) guard: {T} eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bfalse: ff lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top real-vec: ^n uiff: uiff(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  proj-sep_symmetry proj-eq-iff p2J_wf req_witness rmul_wf int_seg_wf proj-sep_wf false_wf le_wf real-proj_wf rless-int rless_wf int-to-real_wf rneq_wf req-vec_wf real-vec-mul_wf decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties int_seg_subtype int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf rsub_wf lelt_wf itermSubtract_wf itermMultiply_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin because_Cache hypothesisEquality independent_functionElimination hypothesis isectElimination independent_isectElimination productElimination sqequalRule imageMemberEquality baseClosed isect_memberFormation lambdaEquality applyEquality natural_numberEquality addEquality dependent_set_memberEquality independent_pairFormation lambdaFormation isect_memberEquality equalityTransitivity equalitySymmetry dependent_pairFormation inlFormation minusEquality setElimination rename unionElimination instantiate cumulativity intEquality hypothesis_subsumption approximateComputation int_eqEquality voidElimination voidEquality

Latex:
\mforall{}[a,b:\mBbbP{}\^{}2].    p2J(a;b)  =  p2J(b;a)  supposing  a  \mneq{}  b



Date html generated: 2017_10_05-AM-00_20_35
Last ObjectModification: 2017_06_17-AM-10_09_54

Theory : inner!product!spaces


Home Index