Nuprl Lemma : proj-incidence_functionality
∀[n:ℕ]. ∀[p1,p2,v1,v2:ℙ^n].  (uiff(v1 on p1;v2 on p2)) supposing (p1 = p2 and v1 = v2)
Proof
Definitions occuring in Statement : 
proj-incidence: v on p
, 
proj-eq: a = b
, 
real-proj: ℙ^n
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
proj-incidence: v on p
, 
squash: ↓T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
real-proj: ℙ^n
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
req-vec: req-vec(n;x;y)
, 
proj-rev: proj-rev(n;p)
, 
real-vec-mul: a*X
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
real-vec: ℝ^n
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
proj-eq-iff, 
sq_stable__req, 
dot-product_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
proj-rev_wf, 
int-to-real_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
int_seg_wf, 
rmul-neq-zero, 
req_witness, 
real-proj_wf, 
proj-incidence_wf, 
proj-eq_wf, 
nat_wf, 
rminus_wf, 
rmul_wf, 
itermSubtract_wf, 
itermMinus_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
req_functionality, 
rminus_functionality, 
req_weakening, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_minus_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
req_wf, 
real-vec-mul_wf, 
uiff_transitivity, 
dot-product_functionality, 
dot-product-linearity2, 
rmul_functionality, 
rmul_preserves_req, 
rmul-zero-both, 
req-implies-req, 
rsub_wf, 
req_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
imageElimination, 
isectElimination, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
applyEquality, 
because_Cache, 
lambdaFormation, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
imageMemberEquality, 
baseClosed, 
independent_pairEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p1,p2,v1,v2:\mBbbP{}\^{}n].    (uiff(v1  on  p1;v2  on  p2))  supposing  (p1  =  p2  and  v1  =  v2)
Date html generated:
2017_10_05-AM-00_19_49
Last ObjectModification:
2017_06_17-AM-10_08_58
Theory : inner!product!spaces
Home
Index