Nuprl Lemma : proj-incidence_functionality

[n:ℕ]. ∀[p1,p2,v1,v2:ℙ^n].  (uiff(v1 on p1;v2 on p2)) supposing (p1 p2 and v1 v2)


Proof




Definitions occuring in Statement :  proj-incidence: on p proj-eq: b real-proj: ^n nat: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] iff: ⇐⇒ Q implies:  Q proj-incidence: on p squash: T nat: ge: i ≥  exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: real-proj: ^n subtype_rel: A ⊆B sq_stable: SqStable(P) req-vec: req-vec(n;x;y) proj-rev: proj-rev(n;p) real-vec-mul: a*X int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b real-vec: ^n rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  proj-eq-iff sq_stable__req dot-product_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf proj-rev_wf int-to-real_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf int_seg_wf rmul-neq-zero req_witness real-proj_wf proj-incidence_wf proj-eq_wf nat_wf rminus_wf rmul_wf itermSubtract_wf itermMinus_wf itermMultiply_wf req-iff-rsub-is-0 req_functionality rminus_functionality req_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_minus_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma req_wf real-vec-mul_wf uiff_transitivity dot-product_functionality dot-product-linearity2 rmul_functionality rmul_preserves_req rmul-zero-both req-implies-req rsub_wf req_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination imageElimination isectElimination dependent_set_memberEquality addEquality setElimination rename natural_numberEquality unionElimination independent_isectElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule applyEquality because_Cache lambdaFormation equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity imageMemberEquality baseClosed independent_pairEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p1,p2,v1,v2:\mBbbP{}\^{}n].    (uiff(v1  on  p1;v2  on  p2))  supposing  (p1  =  p2  and  v1  =  v2)



Date html generated: 2017_10_05-AM-00_19_49
Last ObjectModification: 2017_06_17-AM-10_08_58

Theory : inner!product!spaces


Home Index