Nuprl Lemma : rsqrt-1-plus-ip-positive

rv:InnerProductSpace. ∀h:Point.  (r0 < rsqrt(r1 h^2))


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace rsqrt: rsqrt(x) rless: x < y radd: b int-to-real: r(n) ss-point: Point all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True rge: x ≥ y
Lemmas referenced :  rsqrt-positive radd_wf int-to-real_wf rv-ip_wf rless_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf trivial-rless-radd rless-int rless_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq rv-ip-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality isectElimination natural_numberEquality hypothesis hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule because_Cache productElimination independent_functionElimination independent_pairFormation imageMemberEquality baseClosed equalityTransitivity equalitySymmetry

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}h:Point.    (r0  <  rsqrt(r1  +  h\^{}2))



Date html generated: 2017_10_04-PM-11_51_07
Last ObjectModification: 2017_06_21-PM-00_45_56

Theory : inner!product!spaces


Home Index