Nuprl Lemma : rsqrt-1-plus-ip-positive
∀rv:InnerProductSpace. ∀h:Point.  (r0 < rsqrt(r1 + h^2))
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rsqrt: rsqrt(x)
, 
rless: x < y
, 
radd: a + b
, 
int-to-real: r(n)
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
rge: x ≥ y
Lemmas referenced : 
rsqrt-positive, 
radd_wf, 
int-to-real_wf, 
rv-ip_wf, 
rless_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
trivial-rless-radd, 
rless-int, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
rv-ip-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}h:Point.    (r0  <  rsqrt(r1  +  h\^{}2))
Date html generated:
2017_10_04-PM-11_51_07
Last ObjectModification:
2017_06_21-PM-00_45_56
Theory : inner!product!spaces
Home
Index